1
|
Kumari S, Chowdhry J, Kumar M, Chandra Garg M. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects. ENVIRONMENTAL RESEARCH 2024; 260:119782. [PMID: 39142462 DOI: 10.1016/j.envres.2024.119782] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Zeolites possess a microporous crystalline structure, a large surface area, and a uniform pore size. Natural or synthetic zeolites are commonly utilized for adsorbing organic and inorganic compounds from wastewater because of their unique physicochemical properties and cost-effectiveness. The present review work comprehensively revealed the application of zeolites in removing a diverse range of wastewater contaminates, such as dyes, heavy metal ions, and phenolic compounds, within the framework of contemporary research. The present review work offers a summary of the existing literature about the chemical composition of zeolites and their synthesis by different methods. Subsequently, the article provides a wide range of factors to examine the adsorption mechanisms of both inorganic and organic pollutants using natural zeolites and modified zeolites. This review explores the different mechanisms through which zeolites effectively eliminate pollutants from aquatic matrices. Additionally, this review explores that the Langmuir and pseudo-second-order models are the predominant models used in investigating isothermal and kinetic adsorption and also evaluates the research gap on zeolite through scientometric analysis. The prospective efficacy of zeolite materials in future wastewater treatment may be assessed by a comparative analysis of their capacity to adsorb toxic inorganic and organic contaminates from wastewater, with other adsorbents.
Collapse
Affiliation(s)
- Sheetal Kumari
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India
| | | | - Manish Kumar
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India.
| | - Manoj Chandra Garg
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India.
| |
Collapse
|
2
|
Wang Q, Wang CY, Zhou HD, Xue DX, Xiong XL, Zhu G. Simultaneous adsorption of ammonia nitrogen and phosphate on electro-assisted magnesium/aluminum-loaded sludge-based biochar and its utilization as a plant fertilizer. PLoS One 2024; 19:e0311430. [PMID: 39453971 PMCID: PMC11508052 DOI: 10.1371/journal.pone.0311430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 10/27/2024] Open
Abstract
Herein, Mg/Al-loaded sludge-based biochar was prepared via electro-assisted impregnation. The structure and chemical analysis of modified sludge-based biochar (MgSBC-0.5(@Al) showed that the material was loaded with MgO and Al2O3. The specific surface area of MgSBC-0.5(@Al) was 11.27 times higher than that of unmodified sludge-based biochar (SBC). The simultaneous adsorption performance of MgSBC-0.5(@Al for ammonia nitrogen (NH4+-N) and phosphate phosphorus (PO43--P) was studied. The maximum adsorption capacities of MgSBC-0.5(@Al for NH4+-N and PO43--P at 298 K were 65.19 and 92.10 mg·g-1, respectively, 4.45 and 6.28 times higher than those of SBC. The external and internal elemental compositions of the modified and unmodified biochar specimens were quantitatively characterized using inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, and X-ray fluorescence spectrometry. The results emphasized the importance of Mg-loading for NH4+-N and PO43--P capture. MgO was mainly loaded on the surface of biochar, enabling adsorption through chemical reactions. Analysis showed that the adsorption of NH4+-N and PO43--P on the modified biochar proceeded simultaneously through multiple mechanisms. Particularly, the adsorption of NH4+-N and PO43--P occurred through the precipitation of struvite and physical adsorption, with PO43--P also adsorbed through the formation of MgHPO4 and CaHPO4. Other data indicated that Al, Ca, and Fe had a trapping effect on the adsorbate. Importantly, the biochar after adsorption could be used as a soil amendment.
Collapse
Affiliation(s)
- Qi Wang
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Chu-Ya Wang
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Heng-Deng Zhou
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Dong-Xin Xue
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Xiao-Lu Xiong
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Su Q, Wei X, Yang G, Ou Z, Zhou Z, Huang R, Shi C. In-situ conversion of geopolymer into novel floral magnetic sodalite microspheres for efficient removal of Cd(II) from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131363. [PMID: 37043850 DOI: 10.1016/j.jhazmat.2023.131363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
In the present work, a novel, floral-like, magnetic sodalite microsphere (SODM) was synthesized in situ by using fly ash (FA) and metakaolin (MK) as raw materials and was used to remove Cd(II) from water. Its magnetism can solve the problems of adsorbent recovery and possible secondary pollution. During the static adsorption, SODM shows a maximum adsorption capacity of 245.17 mg/g. The adsorption of Cd(II) on the SODM surface is spontaneous, exothermic, and physicochemical adsorption, which was evaluated by thermodynamics, kinetics, and isotherm studies. During dynamic adsorption, SODM shows a maximum adsorption capacity of 342.74 mg/g in the simulated solution prepared by the deionized water, compared to 215.88 mg/g in the simulated solution prepared using Xiangsi Lake water from Guangxi Minzu University. At 0.5 g SODM dosage in the dynamic adsorption, the adsorption capacity could rise to 632.81 mg/g. These results demonstrated the excellent Cd (II) adsorption performance of the SODM. The adsorption of cadmium on the SODM surface includes the synergistic effects of electrostatic attraction, ion exchange, and surface coordination reaction. Besides, the SODM shows good regeneration performance in both the deionized water and Xiangsi Lake water. The present study explores SODM as an adsorbent for the Cd (II) removal from wastewater and unbolts the industrial applicability of the SODM in the field of wastewater purification.
Collapse
Affiliation(s)
- Qiaoqiao Su
- Key Laboratory of Disaster Prevention and Structural Safety of China Ministry of Education, School of Civil Engineering and Architecture, Guangxi University, Nanning, PR China; Guangxi Key Laboratory for Polysaccharide Materials and their Modification of Guangxi Minzu Univerisity, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, PR China
| | - Xiang Wei
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification of Guangxi Minzu Univerisity, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, PR China
| | - Guangyao Yang
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification of Guangxi Minzu Univerisity, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, PR China
| | - Zhaohui Ou
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification of Guangxi Minzu Univerisity, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, PR China
| | - Zhicheng Zhou
- Power Dispatching and Control Center, China Southern Power Grid Guangxi Power Grid Co Ltd, Guangxi, Nanning 530023, PR China
| | - Ronghua Huang
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification of Guangxi Minzu Univerisity, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, PR China
| | - Caijun Shi
- Key Laboratory of Building Safety and Energy Efficiency (Ministry of Education), College of Civil Engineering, Hunan University, Changsha, PR China.
| |
Collapse
|
4
|
Jaramillo-Fierro X, Alvarado H, Montesdeoca F, Valarezo E. Faujasite-Type Zeolite Obtained from Ecuadorian Clay as a Support of ZnTiO 3/TiO 2 NPs for Cyanide Removal in Aqueous Solutions. Int J Mol Sci 2023; 24:ijms24119281. [PMID: 37298234 DOI: 10.3390/ijms24119281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, zeolites prepared by the hydrothermal method from Ecuadorian clay were combined with the precursor clay and with the semiconductor ZnTiO3/TiO2 prepared by the sol-gel method to adsorb and photodegrade cyanide species from aqueous solutions. These compounds were characterized by X-ray powder diffraction, X-ray fluorescence, scanning electron microscopy, energy-dispersive X-rays, point of zero charge, and specific surface area. The adsorption characteristics of the compounds were measured using batch adsorption experiments as a function of pH, initial concentration, temperature, and contact time. The Langmuir isotherm model and the pseudo-second-order model fit the adsorption process better. The equilibrium state in the reaction systems at pH = 7 was reached around 130 and 60 min in the adsorption and photodegradation experiments, respectively. The maximum cyanide adsorption value (73.37 mg g-1) was obtained with the ZC compound (zeolite + clay), and the maximum cyanide photodegradation capacity (90.7%) under UV light was obtained with the TC compound (ZnTiO3/TiO2 + clay). Finally, the reuse of the compounds in five consecutive treatment cycles was determined. The results reflect that the compounds synthesized and adapted to the extruded form could potentially be used for the removal of cyanide from wastewater.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Hipatia Alvarado
- Ingeniería Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Fernando Montesdeoca
- Ingeniería Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Eduardo Valarezo
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| |
Collapse
|
5
|
Ma S, Yang H, Fu S, He P, Duan X, Yang Z, Jia D, Colombo P, Zhou Y. Additive manufacturing of geopolymers with hierarchical porosity for highly efficient removal of Cs . JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130161. [PMID: 36327833 DOI: 10.1016/j.jhazmat.2022.130161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Geopolymers (GPs) have emerged as promising adsorbents for wastewater treatment due to their superior adsorption stability, tunable porosity, high adsorption capacity, and low-energy production. Despite their great promise, developing GPs with well-controlled hierarchical structures and high porosity remains challenging, and the mechanism underlying the ion adsorption process remains elusive. Here we report a cost-effective and universal approach to fabricate Na or K GPs with sophisticated architectures, high porosity, and arbitrary cation species exchange by means of additive manufacturing and a surfactant. The introduction of sodium lauryl sulfate (SLS) enhanced the porosity of the GP adsorbents, yielding NaGP-lattice-10%SLS adsorbent with a high total porosity of 80.8 vol%. Combining static and dynamic adsorption tests, the effects of morphology, surfactant content, and cation species on Cs+ adsorption performance were systemically investigated. With an initial Cs+ concentration of 900 mg/L, the printed NaGP exhibited a maximum Cs+ adsorption capacity of 80.1 mg/g, outperforming other adsorbents reported so far. The quasi-second-order fit of the NaGP adsorbent showed overall higher R2 values than the quasi-first-order fit, indicating that the adsorption process was dominated by ion exchange. Combined with first-principles calculations, we verified that the content of water in the GP sod cages also affected the ion-exchange process between Na+ and Cs+.
Collapse
Affiliation(s)
- Siqi Ma
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China
| | - Hualong Yang
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China
| | - Shuai Fu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Peigang He
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China.
| | - Xiaoming Duan
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China
| | - Zhihua Yang
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China
| | - Dechang Jia
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China.
| | - Paolo Colombo
- Department of Industrial Engineering, University of Padova, Padova, Italy; Department of Materials Science and Engineering, The Pennsylvania State University, Philadelphia, USA
| | - Yu Zhou
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China; Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
6
|
Jin H, Zhang Y, Zhang X, Chang M, Li C, Lu X, Wang Q. 3D printed geopolymer adsorption sieve for removal of methylene blue and adsorption mechanism. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Ma S, Liu X, Fu S, Zhao S, He P, Duan X, Yang Z, Jia D, Colombo P, Zhou Y. Direct ink writing of porous SiC ceramics with geopolymer as binder. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
8
|
Oleic Acid-Tailored Geopolymer Microspheres with Tunable Porous Structure for Enhanced Removal from Tetracycline in Saline Water. SUSTAINABILITY 2022. [DOI: 10.3390/su14116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Tetracycline (TC) in the water body poses a huge threat to the ecological environment. There is a great challenge to develop highly efficient, green, low-cost and reusable adsorbents for TC removal from saline water. Herein, metakaolin-based geopolymer microspheres (MM) modified by oleic acid were proposed for the enhanced adsorption of TC from saline water. Experimental and characterization results showed that the introduction of oleic acid into the MM effectively adjusted the specific surface area, pore volume and zeta potential of the MM, thus accelerating the adsorption rate and enhancing the TC adsorption capacity of the MM. The adsorption process fitted well to the pseudo-second-order kinetic and Langmuir isothermal models. The Langmuir adsorption capacity of TC by the optimal MM, namely MM3 (0.3%, oleic acid), reached 645.7 mg·g−1 at 298 K, which was higher than many reported adsorbents. The adsorption process was endothermic and spontaneous. The MM3 had good adsorption performance of TC from saline water and regeneration performance. Moreover, the breakthrough curves of the MM3 in a column system were correlative with the Thomas and Yoon–Nelson models. The adsorption mechanisms of TC by the MM3 involved Van der Waals forces, electrostatic interactions, hydrogen–bonding interactions, and ion exchange.
Collapse
|
9
|
Ahmed Z, Wu P, Wu J, Lu B, Abbasi SA, Rehman S, Li Y, Shang Z. Single and binary adsorption of lead and cadmium ions in aqueous solutions and river water by butylamine functionalized vermiculite: performance and mechanism. ENVIRONMENTAL TECHNOLOGY 2022:1-22. [PMID: 35225746 DOI: 10.1080/09593330.2022.2048085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Lead and cadmium are toxic to human, animal, and plant health; they enhance oxidative stress indirectly while simultaneously acting through other toxicodynamic mechanisms. In this study, pristine vermiculite (VER) was functionalized with butylamine (BUT) and a novel organoclay (BUT-VER) adsorbent material was produced for simultaneous removal of Pb(II) and Cd(II) in aquatic medium. The adsorbents were characterized by spectroscopic, microscopic, spectrometric, and potentiometric techniques. The adsorption affecting parameters, including pH, time, initial concentration, temperature, and co-existing cations were investigated and optimized. The kinetic data results were in better agreement with pseudo-second-order (PSO) model (R2 > 0.992). Multiple isotherm models were used to study the adsorption system and results showed that adsorption was monolayer. The BUT-VER showed an improvement in adsorption capacity in a single system (Pb(II): from 134.2 to 160.6 mg g-1) and (Cd(II): from 51.1 to 58.9 mg g-1) while in binary system (Pb(II): from 107.3 to 114.5 mg g-1) and (Cd(II): from 33.7 to 39.7 mg g-1), respectively. Furthermore, BUT-VER was tested in real river water and removed efficiency of >99% was achieved in just 1 h. The dominant mechanisms were electrostatic attraction and complexation. BUT-VER was regenerated for five consecutive cycles and showed >90% removal efficiency. These findings suggest that the proposed inexpensive adsorbent has the potential for practical applications of toxic metals removal from water.
Collapse
Affiliation(s)
- Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
- Department of Energy and Environment Engineering, Dawood University of Engineering and Technology, Karachi, Pakistan
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, People's Republic of China
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Bingxin Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Sikandar Ali Abbasi
- Department of Energy and Environment Engineering, Dawood University of Engineering and Technology, Karachi, Pakistan
| | - Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Yihao Li
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Zhongbo Shang
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Effects of Si/Al Ratios on the Bulk-Type Zeolite Formation Using Synthetic Metakaolin-Based Geopolymer with Designated Composition. CRYSTALS 2021. [DOI: 10.3390/cryst11111310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this paper, synthetic metakaolin with fixed composition (Al2O3·2SiO2) was produced by a simple chemosynthetic route. The chemosynthetic metakaolin can eliminate the influence of impurities in metakaolin from natural kaolin minerals. The synthetic metakaolin together with NaOH and SiO2-sol were used to prepare Na-based geopolymer precursors with various molar ratios of Si/Al. The molar ratios of Si/Al from 1 to 2 were tailored by adding different contents of SiO2-sol. Zeolite/geopolymer composites or monolith-type zeolite were successfully fabricated from synthetic metakaolin-based geopolymer through a hydrothermal process. The effects of Si/Al ratios on the phase composition and microstructure of the produced zeolite/geopolymer composites or zeolites were studied. The results proved that the composition of synthetic metakaolin and geopolymer precursors can be facilely tuned, and the monolithic geopolymer precursors can be mostly, or even totally, transformed into zeolite after hydrothermal treatment.
Collapse
|
11
|
Jaramillo-Fierro X, González S, Montesdeoca-Mendoza F, Medina F. Structuring of ZnTiO 3/TiO 2 Adsorbents for the Removal of Methylene Blue, Using Zeolite Precursor Clays as Natural Additives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:898. [PMID: 33915750 PMCID: PMC8067086 DOI: 10.3390/nano11040898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 12/23/2022]
Abstract
Adsorption is an effective method of removing harmful pollutants from air and water. In the present study, zeolites prepared by sol-gel method from two Ecuadorian clays were combined with precursor clays and the ZnTiO3/TiO2 semiconductor for adsorbing methylene blue (MB) as a water contaminant. The synthesized compounds were characterized using powder X-ray diffraction, X-ray fluorescence, scanning electron microscopy, energy dispersive X-ray, and surface area measurement. These compounds were combined to form cylindrical extrudates of 0.2 cm (diameter) and 1.0 cm (length). The adsorption characteristics of the composites were measured using batch sorption studies as a function of pH, initial concentration, and contact time. The pseudo-second-order model and the Langmuir isotherm model were better suited to the adsorption process. The equilibrium state was achieved around 180 min of adsorption, and a pH of 7 was established as the optimal operating condition. The maximum adsorption values of the dye were obtained with the composites derived from G-Clay, whose average adsorption capacity was 46.36 mg g-1, in contrast with composites derived from R-Clay, whose average adsorption value was 36.24 mg g-1. The results reflect that synthesized composites could be used potentially for the removal of cationic dye from wastewater.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 11-01-608, Ecuador; (S.G.); (F.M.-M.)
- Departamento d’Enginyería Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain;
| | - Silvia González
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 11-01-608, Ecuador; (S.G.); (F.M.-M.)
| | - Fernando Montesdeoca-Mendoza
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 11-01-608, Ecuador; (S.G.); (F.M.-M.)
| | - Francesc Medina
- Departamento d’Enginyería Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain;
| |
Collapse
|