1
|
Markevičiūtė Z, Guerreschi A, Menin G, Malpei F, Varžinskas V. Wheat Bran and Saccharomyces Cerevisiae Biomass' Effect on Aerobic and Anaerobic Degradation Efficiency of Paper Composite. Microorganisms 2024; 12:2018. [PMID: 39458328 PMCID: PMC11509976 DOI: 10.3390/microorganisms12102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
This study is a continuation of research on sustainable food packaging materials made from locally available feedstock and industrial by-products within the Baltic Sea region. Its main focus is the impact of wheat bran filler and Saccharomyces cerevisiae additive, which was used to develop a novel bio-coating for paper composite packaging, on the biodegradation efficiency of paper composites under aerobic and anaerobic conditions. In this study, we analyzed the effect of 15% and 40% concentrations of wheat bran filler and Saccharomyces cerevisiae biomass on the biodegradation efficiency of paper composites. This research was conducted under controlled environmental conditions, with aerobic biodegradation tested at 46 °C in a compost-based mesophilic-thermophilic environment and anaerobic biodegradation tested at 55 °C in an active inoculum thermophilic environment. The results show that the presence of wheat bran filler significantly improves biodegradation efficiency compared to microcrystalline cellulose reference material. Under aerobic conditions, the biodegradation efficiency for the 40% wheat bran and yeast sample was 6.34%, compared to only 0.71% for the cellulose reference material. In anaerobic conditions, the 15% wheat bran and yeast sample showed a biodegradation efficiency of 96.62%, compared to 82.32% for the cellulose reference material.
Collapse
Affiliation(s)
- Zita Markevičiūtė
- Centre for Packaging Innovations and Research, Kaunas University of Technology, 51424 Kaunas, Lithuania
| | - Arianna Guerreschi
- Fabe Laboratory, Department of Civil, Environmental and Infrastructure Engineering, Politecnico di Milano, 20156 Milan, Italy
| | - Glauco Menin
- Environmental Engineering Laboratory, Department of Civil, Environmental and Infrastructure Engineering, Politecnico di Milano, 20156 Milan, Italy
| | - Francesca Malpei
- Department of Civil, Environmental and Infrastructure Engineering, Politecnico di Milano, 20156 Milan, Italy
| | - Visvaldas Varžinskas
- Institute of Environmental Engineering, Kaunas University of Technology, 44239 Kaunas, Lithuania
| |
Collapse
|
2
|
Wu H, Li A, Zhang H, Li S, Yang C, Lv H, Yao Y. Microbial mechanisms for higher hydrogen production in anaerobic digestion at constant temperature versus gradient heating. MICROBIOME 2024; 12:170. [PMID: 39252128 PMCID: PMC11386108 DOI: 10.1186/s40168-024-01908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Clean energy hydrogen (H2) produced from abundant lignocellulose is an alternative to fossil energy. As an essential influencing factor, there is a lack of comparison between constant temperatures (35, 55 and 65 °C) and gradient heating temperature (35 to 65 °C) on the H2 production regulation potential from lignocellulose-rich straw via high-solid anaerobic digestion (HS-AD). More importantly, the microbial mechanism of temperature regulating H2 accumulation needs to be investigated. RESULTS Constant 65 °C led to the lowest lignin residue (1.93%) and the maximum release of cellulose and hemicellulose, and the highest H2 production (26.01 mL/g VS). H2 production at 35 and 55 °C was only 14.56 and 24.13 mL/g VS, respectively. In order to further explore the potential of ultra-high temperature (65 °C), HS-AD was performed by gradient heating conditions (35 to 65 °C). However, compared to constant 65 °C, gradient heating conditions led to higher lignin residue (2.49%) and lower H2 production (13.53 mL/g VS) than gradient heating conditions (47.98%). In addition, metagenomic analysis showed the cellulose/hemicellulose hydrolyzing bacteria and genes (mainly Thermoclostridium, and xynA, xynB, abfA, bglB and xynD), H2-producing bacteria and related genes (mainly Thermoclostridium, and nifD, nifH and nifK), and microbial movement and metabolic functions were enriched at 65 °C. However, the enrichment of two-component systems under gradient heating conditions resulted in a lack of highly-enriched ultra-high-temperature cellulose/hemicellulose hydrolyzing genera and related genes but rather enriched H2 consumption genera and genes (mainly Acetivibrio, and hyaB and hyaA) resulting in a weaker H2 production. CONCLUSIONS The lignin degradation process does not directly determine H2 accumulation, which was actually regulated by bacteria/genes contributing to H2 production/consumption. In addition, it is temperature that enhances the hydrolysis process of lignin rather than lignin-degrading enzymes, bacteria and genes by promoting microbial material transfer and metabolism. In terms of temperature, one of the key parameters of HS-AD for H2 production, we developed an important regulatory strategy, enriched the theoretical basis of temperature regulation for H2 production to further expanded the research horizon in this field. Video Abstract.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Suqi Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Caiyun Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Hongyi Lv
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yiqing Yao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
3
|
Chettri D, Verma AK, Ghosh S, Verma AK. Biogas from lignocellulosic feedstock: current status and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1-26. [PMID: 37697197 DOI: 10.1007/s11356-023-29805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
The organic wastes and residues generated from agricultural, industrial, and domestic activities have the potential to be converted to bioenergy. One such energy is biogas, which has already been included in rural areas as an alternative cooking energy source and agricultural activities. It is produced via anaerobic digestion of a wide range of organic nutrient sources and is an essential renewable energy source. The factors influencing biogas yield, i.e., the various substrate, their characteristics, pretreatment methods involved, different microbial types, sources, and inoculum properties, are analyzed. Furthermore, the optimization of these parameters, along with fermentation media optimization, such as optimum pH, temperature, and anaerobic digestion strategies, is discussed. Novel approaches of bioaugmentation, co-digestion, phase separation, co-supplementation, nanotechnology, and biorefinery approach have also been explored for biogas production. Finally, the current challenges and prospects of the process are discussed in the review.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, India, 737102
| | - Ashwani Kumar Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shilpi Ghosh
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, India, 734104
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, India, 737102.
| |
Collapse
|
4
|
Pandey P, Chowdhury D, Wang Y. Denaturing Gradient Gel Electrophoresis Approach for Microbial Shift Analysis in Thermophilic and Mesophilic Anaerobic Digestions. Gels 2024; 10:339. [PMID: 38786256 PMCID: PMC11120850 DOI: 10.3390/gels10050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
To determine the evolution of microbial community and microbial shift under anaerobic processes, this study investigates the use of denaturing gradient gel electrophoresis (DGGE). In the DGGE, short- and medium-sized DNA fragments are separated based on their melting characteristics, and this technique is used in this study to understand the dominant bacterial community in mesophilic and thermophilic anaerobic digestion processes. Dairy manure is known for emitting greenhouse gases (GHGs) such as methane, and GHG emissions from manure is a biological process that is largely dependent on the manure conditions, microbial community presence in manure, and their functions. Additional efforts are needed to understand the GHG emissions from manure and develop control strategies to minimize the biological GHG emissions from manure. To study the microbial shift during anaerobic processes responsible for GHG emission, we conducted a series of manure anaerobic digestion experiments, and these experiments were conducted in lab-scale reactors operated under various temperature conditions (28 °C, 36 °C, 44 °C, and 52 °C). We examined the third variable region (V3) of the 16S rRNA gene fingerprints of bacterial presence in anaerobic environment by PCR amplification and DGGE separation. Results showed that bacterial community was affected by the temperature conditions and anaerobic incubation time of manure. The microbial community structure of the original manure changed over time during anaerobic processes, and the community composition changed substantially with the temperature of the anaerobic process. At Day 0, the sequence similarity confirmed that most of the bacteria were similar (>95%) to Acinetobacter sp. (strain: ATCC 31012), a Gram-negative bacteria, regardless of temperature conditions. At day 7, the sequence similarity of DNA fragments of reactors (28 °C) was similar to Acinetobacter sp.; however, the DNA fragments of effluent of reactors at 44 °C and 52 °C were similar to Coprothermobacter proteolyticus (strain: DSM 5265) (similarity: 97%) and Tepidimicrobium ferriphilum (strain: DSM 16624) (similarity: 100%), respectively. At day 60, the analysis showed that DNA fragments of effluent of 28 °C reactor were similar to Galbibacter mesophilus (strain: NBRC 10162) (similarity: 87%), and DNA fragments of effluent of 36 °C reactors were similar to Syntrophomonas curvata (strain: GB8-1) (similarity: 91%). In reactors with a relatively higher temperature, the DNA fragments of effluent of 44 °C reactor were similar to Dielma fastidiosa (strain: JC13) (similarity: 86%), and the DNA fragments of effluent of 52 °C reactor were similar to Coprothermobacter proteolyticus (strain: DSM 5265) (similarity: 99%). To authors' knowledge, this is one of the few studies where DGGE-based approach is utilized to study and compare microbial shifts under mesophilic and thermophilic anaerobic digestions of manure simultaneously. While there were challenges in identifying the bands during gradient gel electrophoresis, the joint use of DGGE and sequencing tool can be potentially useful for illustrating and comparing the change in microbial community structure under complex anaerobic processes and functionality of microbes for understanding the consequential GHG emissions from manure.
Collapse
Affiliation(s)
- Pramod Pandey
- Department of Population Health and Reproduction, University of California-Davis, Davis, CA 95616, USA; (D.C.); (Y.W.)
| | - Dhrubajyoti Chowdhury
- Department of Population Health and Reproduction, University of California-Davis, Davis, CA 95616, USA; (D.C.); (Y.W.)
- Department of Life Sciences, School of Science, Gandhi Institute of Technology and Management, Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Yi Wang
- Department of Population Health and Reproduction, University of California-Davis, Davis, CA 95616, USA; (D.C.); (Y.W.)
| |
Collapse
|
5
|
Li C, Lü F, Peng W, He PJ, Zhang H. Functional Redundant Microbiome Enhanced Anaerobic Digestion Efficiency under Ammonium Inhibition Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6659-6669. [PMID: 38557040 DOI: 10.1021/acs.est.4c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Revealing the role of functional redundancy is of great importance considering its key role in maintaining the stability of microbial ecosystems in response to various disturbances. However, experimental evidence on this point is still lacking due to the difficulty in "manipulating" and depicting the degree of redundancy. In this study, manipulative experiments of functional redundancy were conducted by adopting the mixed inoculation strategy to evaluate its role in engineered anaerobic digestion systems under ammonium inhibition conditions. The results indicated that the functional redundancy gradient was successfully constructed and confirmed by evidence from pathway levels. All mixed inoculation groups exhibited higher methane production regardless of the ammonium level, indicating that functional redundancy is crucial in maintaining the system's efficiency. Further analysis of the metagenome-assembled genomes within different functional guilds revealed that the extent of redundancy decreased along the direction of the anaerobic digestion flow, and the role of functional redundancy appeared to be related to the stress level. The study also found that microbial diversity of key functional populations might play a more important role than their abundance on the system's performance under stress. The findings provide direct evidence and highlight the critical role of functional redundancy in enhancing the efficiency and stability of anaerobic digestion.
Collapse
Affiliation(s)
- Chao Li
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Peng
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Pin-Jing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Effect of Alkaline and Mechanical Pretreatment of Wheat Straw on Enrichment Cultures from Pachnoda marginata Larva Gut. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In order to partially mimic the efficient lignocellulose pretreatment process performed naturally in the gut system of Pachnoda marginata larvae, two wheat straw pretreatments were evaluated: a mechanical pretreatment via cutting the straw into two different sizes and an alkaline pretreatment with calcium hydroxide. After pretreatment, gut enrichment cultures on wheat straw at alkaline pH were inoculated and kept at mesophilic conditions over 45 days. The methanogenic community was composed mainly of the Methanomicrobiaceae and Methanosarcinaceae families. The combined pretreatment, size reduction and alkaline pretreatment, was the best condition for methane production. The positive effect of the straw pretreatment was higher in the midgut cultures, increasing the methane production by 192%, while for hindgut cultures the methane production increased only by 149% when compared to non-pretreated straw. Scanning electron microscopy (SEM) showed that the alkaline pretreatment modified the surface of the wheat straw fibers, which promoted biofilm formation and microbial growth. The enrichment cultures derived from larva gut microbiome were able to degrade larger 1 mm alkaline treated and smaller 250 µm but non-pretreated straw at the same efficiency. The combination of mechanical and alkaline pretreatments resulted in increased, yet not superimposed, methane yield.
Collapse
|
7
|
Luo L, Yan B, Xu S, Zhou J, Liang J, Zhao J, Tyagi RD, Wong JWC. Regulation of acidogenic fermentation through exogenous additives for promoting carbon conversion of food waste in two-phase anaerobic system. BIORESOURCE TECHNOLOGY 2023; 368:128368. [PMID: 36423758 DOI: 10.1016/j.biortech.2022.128368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In this study, exogenous Megasphaera elsdenii inoculum and acetate supplementation were introduced at the acidogenic phase to regulate the acidogenic fermentation pathway and assess their effects on food waste (FW) carbon conversion in two-phase anaerobic digestion (AD) system. These two additives significantly accelerated organic removal efficiency and subsequently increased FW hydrolysis and acidogenesis by 16% and 35%, respectively. As expected, two exogenous additives promoted butyrate fermentation during FW acidogenesis. With regard to the role of exogenous additives, both hydrogen and butyrate yields increased by over 60%. This desired increment resulted in a 25% increase in methane production. The overall carbon conversion from FW in the integrated two-phase AD system was enhanced by biochemical additives, which was 1.3-fold higher than that in control without any additives. Collectively, findings demonstrate the feasibility of regulating acidogenic fermentation via exogenous biochemical additives and its benefits on FW carbon conversion during AD process.
Collapse
Affiliation(s)
- Liwen Luo
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Binghua Yan
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Suyun Xu
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Zhou
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Faculty of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jialin Liang
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - R D Tyagi
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; School of Technology, Huzhou University, Huzhou 313000, China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; School of Technology, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
8
|
Gaspari M, Alvarado-Morales M, Tsapekos P, Angelidaki I, Kougias P. Simulating the performance of biogas reactors co-digesting ammonia and/or fatty acid rich substrates. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Gaspari M, Treu L, Zhu X, Palù M, Angelidaki I, Campanaro S, Kougias PG. Microbial dynamics in biogas digesters treating lipid-rich substrates via genome-centric metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146296. [PMID: 33714811 DOI: 10.1016/j.scitotenv.2021.146296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Co-digestion with lipid-rich substrates is a likely strategy in biogas plants, due to their high energy content. However, the process stability is vulnerable to inhibition due to the sudden increase of fatty-acid concentration. Therefore, techniques that promote the adaptation of the microorganisms to the presence of lipids have been proposed. In this frame, the initial hypothesis of the work was that a gradual change in feedstock composition would enable us to elucidate the microbial organisation as a result of deterministic (i.e. chemical composition of influent) and stochastic (e.g. interspecies interactions) factors. This study investigates the response of the biogas microbiome to gradual increment of the Organic Loading Rate by supplementing the influent feedstock with Na-Oleate. The results showed that as a response to the feedstock shifts three clusters describing microbes behaviours were formed. The dynamics and the functional role of the formed microbial clusters were unveiled, providing explanations for their abundance and behavior. Process monitoring indicated that the reactors responded immediately to lipid supplementation and they managed to stabilize their performance in a short period of time. The dominance of Candidatus Methanoculleus thermohydrogenotrophicum in the biogas reactors fed exclusively with cattle manure indicated that the predominant methanogenic pathway was hydrogenotrophic. Additionally, the abundance of this methanogen was further enhanced upon lipid supplementation and its growth was supported by syntrophic bacteria capable to metabolize fatty acids. However, with the shift back to the original feedstock (i.e. solely cattle manure), the microbial dynamicity significantly altered with a remarkable increment in the abundance of a propionate degrader affiliated to the order of Bacteroidales, which became the predominant microorganism of the consortium.
Collapse
Affiliation(s)
- Maria Gaspari
- Department of Hydraulics, Soil Science and Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; Soil and Water Resources Institute, Hellenic Agricultural Organisation Demeter, Thermi, Thessaloniki 57001, Greece
| | - Laura Treu
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Xinyu Zhu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Matteo Palù
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | | - Panagiotis G Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Demeter, Thermi, Thessaloniki 57001, Greece
| |
Collapse
|
10
|
Hashemi S, Hashemi SE, Lien KM, Lamb JJ. Molecular Microbial Community Analysis as an Analysis Tool for Optimal Biogas Production. Microorganisms 2021; 9:microorganisms9061162. [PMID: 34071282 PMCID: PMC8226781 DOI: 10.3390/microorganisms9061162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
The microbial diversity in anaerobic digestion (AD) is important because it affects process robustness. High-throughput sequencing offers high-resolution data regarding the microbial diversity and robustness of biological systems including AD; however, to understand the dynamics of microbial processes, knowing the microbial diversity is not adequate alone. Advanced meta-omic techniques have been established to determine the activity and interactions among organisms in biological processes like AD. Results of these methods can be used to identify biomarkers for AD states. This can aid a better understanding of system dynamics and be applied to producing comprehensive models for AD. The paper provides valuable knowledge regarding the possibility of integration of molecular methods in AD. Although meta-genomic methods are not suitable for on-line use due to long operating time and high costs, they provide extensive insight into the microbial phylogeny in AD. Meta-proteomics can also be explored in the demonstration projects for failure prediction. However, for these methods to be fully realised in AD, a biomarker database needs to be developed.
Collapse
Affiliation(s)
- Seyedbehnam Hashemi
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Sayed Ebrahim Hashemi
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Kristian M. Lien
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Jacob J. Lamb
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
- Department of Electronic Systems, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Correspondence:
| |
Collapse
|