• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4789089)   Today's Articles (5885)
For: Zhu J, Deng F, Zhao J, Zheng H. Attention-based parallel networks (APNet) for PM2.5 spatiotemporal prediction. Sci Total Environ 2021;769:145082. [PMID: 33485205 DOI: 10.1016/j.scitotenv.2021.145082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Number Cited by Other Article(s)
1
Fang Y, Zhang S, Yu K, Gao J, Liu X, Cui C, Hu J. PM2.5 concentration prediction algorithm integrating traffic congestion index. J Environ Sci (China) 2025;155:359-371. [PMID: 40246471 DOI: 10.1016/j.jes.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 04/19/2025]
2
Yue X, Bai Y, Yu Q, Ding L, Song W, Liu W, Ren H, Song Q. Novel hybrid data-driven modeling based on feature space reconstruction and multihead self-attention gated recurrent unit: applied to PM2.5 concentrations prediction. Sci Rep 2025;15:17087. [PMID: 40379645 PMCID: PMC12084598 DOI: 10.1038/s41598-025-00911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 05/02/2025] [Indexed: 05/19/2025]  Open
3
Wei Q, Zhang H, Yang J, Niu B, Xu Z. PM2.5 concentration prediction using a whale optimization algorithm based hybrid deep learning model in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025;371:125953. [PMID: 40032225 DOI: 10.1016/j.envpol.2025.125953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
4
Hossen MK, Peng YT, Chen MC. Enhancing PM2.5 prediction by mitigating annual data drift using wrapped loss and neural networks. PLoS One 2025;20:e0314327. [PMID: 39932913 PMCID: PMC11813127 DOI: 10.1371/journal.pone.0314327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/08/2024] [Indexed: 02/13/2025]  Open
5
Zhou S, Wang W, Zhu L, Qiao Q, Kang Y. Deep-learning architecture for PM2.5 concentration prediction: A review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024;21:100400. [PMID: 38439920 PMCID: PMC10910069 DOI: 10.1016/j.ese.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/06/2024]
6
Liu Z, Ji D, Wang L. PM2.5 concentration prediction based on EEMD-ALSTM. Sci Rep 2024;14:12636. [PMID: 38825660 PMCID: PMC11144699 DOI: 10.1038/s41598-024-63620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]  Open
7
Lin MD, Liu PY, Huang CW, Lin YH. The application of strategy based on LSTM for the short-term prediction of PM2.5 in city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;906:167892. [PMID: 37852485 DOI: 10.1016/j.scitotenv.2023.167892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
8
Liu K, Zhang Y, He H, Xiao H, Wang S, Zhang Y, Li H, Qian X. Time series prediction of the chemical components of PM2.5 based on a deep learning model. CHEMOSPHERE 2023;342:140153. [PMID: 37714468 DOI: 10.1016/j.chemosphere.2023.140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
9
Li J, Crooks J, Murdock J, de Souza P, Hohsfield K, Obermann B, Stockman T. A nested machine learning approach to short-term PM2.5 prediction in metropolitan areas using PM2.5 data from different sensor networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;873:162336. [PMID: 36813194 DOI: 10.1016/j.scitotenv.2023.162336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
10
Teng M, Li S, Xing J, Fan C, Yang J, Wang S, Song G, Ding Y, Dong J, Wang S. 72-hour real-time forecasting of ambient PM2.5 by hybrid graph deep neural network with aggregated neighborhood spatiotemporal information. ENVIRONMENT INTERNATIONAL 2023;176:107971. [PMID: 37220671 DOI: 10.1016/j.envint.2023.107971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
11
Du W, Chen L, Wang H, Shan Z, Zhou Z, Li W, Wang Y. Deciphering urban traffic impacts on air quality by deep learning and emission inventory. J Environ Sci (China) 2023;124:745-757. [PMID: 36182179 DOI: 10.1016/j.jes.2021.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/27/2021] [Accepted: 12/19/2021] [Indexed: 06/16/2023]
12
Lin K, Zhao Y, Kuo JH. Deep learning hybrid predictions for the amount of municipal solid waste: A case study in Shanghai. CHEMOSPHERE 2022;307:136119. [PMID: 35998731 DOI: 10.1016/j.chemosphere.2022.136119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
13
Forecasting Fine Particulate Matter Concentrations by In-Depth Learning Model According to Random Forest and Bilateral Long- and Short-Term Memory Neural Networks. SUSTAINABILITY 2022. [DOI: 10.3390/su14159430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
14
Exploiting PSO-SVM and sample entropy in BEMD for the prediction of interval-valued time series and its application to daily PM2.5 concentration forecasting. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03835-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
15
Research on PM2.5 Concentration Prediction Based on the CE-AGA-LSTM Model. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
16
Wang J, Li X, Jin L, Li J, Sun Q, Wang H. An air quality index prediction model based on CNN-ILSTM. Sci Rep 2022;12:8373. [PMID: 35589914 PMCID: PMC9120089 DOI: 10.1038/s41598-022-12355-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022]  Open
17
Teng M, Li S, Xing J, Song G, Yang J, Dong J, Zeng X, Qin Y. 24-Hour prediction of PM2.5 concentrations by combining empirical mode decomposition and bidirectional long short-term memory neural network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022;821:153276. [PMID: 35074389 DOI: 10.1016/j.scitotenv.2022.153276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
18
Shi L, Zhang H, Xu X, Han M, Zuo P. A balanced social LSTM for PM2.5 concentration prediction based on local spatiotemporal correlation. CHEMOSPHERE 2022;291:133124. [PMID: 34861262 DOI: 10.1016/j.chemosphere.2021.133124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
19
Zaini N, Ean LW, Ahmed AN, Malek MA. A systematic literature review of deep learning neural network for time series air quality forecasting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022;29:4958-4990. [PMID: 34807385 DOI: 10.1007/s11356-021-17442-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA