1
|
Fang H, Li Y, Song Y, Yu L, Song X, Zhao C. Consolidated bioprocessing of lignocellulosic wastes in Northwest China for D-glucaric acid production by an artificial microbial consortium. Bioprocess Biosyst Eng 2024; 47:1999-2010. [PMID: 39158597 DOI: 10.1007/s00449-024-03081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
D-glucaric acid is a platform chemical of great importance and the consolidated bioprocessing (CBP) of lignocellulose by the microbial consortium of Trichoderma reesei C10 and Saccharomyces cerevisiae LGA-1C3S2 features prospects in biomanufacturing it. Here we compared some representative lignocelluloses in Northwest China including corn stover, wheat straw and switchgrass, and the leading pretreatments including steam explosion, subcritical water pretreatment, sodium hydroxide pretreatment, aqueous ammonia pretreatment, lime pretreatment, and diluted sulfuric acid pretreatment. It was found that sodium hydroxide pretreated switchgrass (SHPSG) was the best substrate for D-glucaric acid production, resulting in the highest D-glucaric acid titers, 11.69 ± 0.73 g/L in shake flask and 15.71 ± 0.80 g/L in 10L airlift fermenter, respectively. To the best of our knowledge, this is the highest D-glucaric acid production titer from lignocellulosic biomass. This work offers a paradigm of producing low-cost D-glucaric acid for low-carbon polyethylene 2,5-furandicarboxylate (PEF) and a reference on developing biorefinery in Northwest China.
Collapse
Affiliation(s)
- Hao Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, Zhejiang, China.
| | - Yuchen Li
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Yuqi Song
- Faculty of Engineering, Monash University, 14 Alliance Lane, Clayton Victoria 3800, Clayton, Australia
| | - Liang Yu
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington, 99164, USA
| | - Xiangyang Song
- College of Chemical Engineering, Nanjing Forestry University, No.159 Longpan Road, Xuanwu District, Nanjing, 210037, Jiangsu, China
- Key Laboratory of Forestry Genetics & Biotechnology of Chinese Ministry of Education, Nanjing Forestry University, No.159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Chen Zhao
- College of Life Sciences, Northwest A&F University, 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Faria D, Carvalho APAD, Conte-Junior CA. Fermentation of Biomass and Residues from Brazilian Agriculture for 2G Bioethanol Production. ACS OMEGA 2024; 9:40298-40314. [PMID: 39372026 PMCID: PMC11447871 DOI: 10.1021/acsomega.4c06579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Brazil is one of the world's leading producers of staple foods and bioethanol. Lignocellulosic residual sources have been proposed as a promising feedstock for 2G bioethanol and to reduce competition between food and fuels. This work aims to discuss residual biomass from Brazilian agriculture as lignocellulosic feedstock for 2G bioethanol production as bagasse, stalk, stem, and peels, using biorefining concepts to increase ethanol yields. Herein, we focused on biomass chemical characteristics, pretreatment, microorganisms, and optimization of process parameters that define ethanol yields for bench-scale fermentation. Although several techniques, such as carbon capture, linking enzymes to supports, and a consortium of microorganisms, emerge as future alternatives in bioethanol synthesis, these technologies entail necessary optimization efforts before commercial availability. Overcoming these challenges is essential to linking technological innovation to synthesizing environmentally friendly fuels and searching other biomass wastes for 2G bioethanol to increase the biofuel industry's potential. Thus, this work is the first to discuss underutilized lignocellulosic feedstock from other agrifoods beyond sugar cane or corn, such as babassu, tobacco, cassava, orange, cotton, soybean, potatoes, and rice. Residual biomasses combined with optimized pretreatment and mixed fermentation increase hydrolysis efficiency, fermentation, and purification. Therefore, more than a product with a high added value, bioethanol synthesis from Brazilian residual biomass prevents waste production.
Collapse
Affiliation(s)
- Douglas
José Faria
- Department
of Biochemistry, Chemistry Institute, Federal
University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Research
Support Group on Nanomaterials, Polymers, and Interaction with Biosystems
(BioNano), Chemistry Institute, Federal
University of Rio de Janeiro, Rio
de Janeiro, RJ 21941909, Brazil
- Center
for Food Analysis (NAL), Technological Development Support Laboratory
(LADETEC), Federal University of Rio de
Janeiro, Rio de Janeiro, RJ 21941598, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department
of Biochemistry, Chemistry Institute, Federal
University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Research
Support Group on Nanomaterials, Polymers, and Interaction with Biosystems
(BioNano), Chemistry Institute, Federal
University of Rio de Janeiro, Rio
de Janeiro, RJ 21941909, Brazil
- Center
for Food Analysis (NAL), Technological Development Support Laboratory
(LADETEC), Federal University of Rio de
Janeiro, Rio de Janeiro, RJ 21941598, Brazil
- Graduate
Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
| | - Carlos Adam Conte-Junior
- Department
of Biochemistry, Chemistry Institute, Federal
University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Research
Support Group on Nanomaterials, Polymers, and Interaction with Biosystems
(BioNano), Chemistry Institute, Federal
University of Rio de Janeiro, Rio
de Janeiro, RJ 21941909, Brazil
- Center
for Food Analysis (NAL), Technological Development Support Laboratory
(LADETEC), Federal University of Rio de
Janeiro, Rio de Janeiro, RJ 21941598, Brazil
- Graduate
Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
| |
Collapse
|
3
|
Srivastava S, Dafale NA. Tailored microbial consortium producing hydrolytic enzyme cocktail for maximum saccharification of wheat straw. BIORESOURCE TECHNOLOGY 2024; 399:130560. [PMID: 38460563 DOI: 10.1016/j.biortech.2024.130560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
The potential of hydrolytic enzyme cocktail obtained from designed bacterial consortium WSh-1 comprising Bacillus subtilis CRN 16, Paenibacillus dendritiformis CRN 18, Niallia circulans CRN 24, Serratia marscens CRN 29, and Streptomyces sp. CRN 30, was investigated for maximum saccharification. Activity was further enhanced to 1.01 U/ml from 0.82 U/ml by supplementing growth medium with biotin and cellobiose as a cofactor and inducer. Through kinetic analysis, the enzyme cocktail showed a high wheat straw affinity with Michaelis-Menten constant (Km) of 0.68 µmol/L and a deconstruction rate (Vmax) of 4.5 U/ml/min. The statistical optimization of critical parameters increased saccharification to 89 %. The optimized process in a 5-L lab-scale bioreactor yielded 501 mg/g of reducing sugar from NaOH-pretreated wheat straw. Lastly, genomic insights revealed unique abundant oligosaccharide deconstruction enzymes with the most diverse CAZyme profile. The consortium-mediated enzyme cocktails offer broader versatility with efficiency for the economical and sustainable valorization of lignocellulosic waste.
Collapse
Affiliation(s)
- Shweta Srivastava
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Olawuni OA, Sadare OO, Moothi K. The adsorption routes of 4IR technologies for effective desulphurization using cellulose nanocrystals: Current trends, challenges, and future perspectives. Heliyon 2024; 10:e24732. [PMID: 38312585 PMCID: PMC10835247 DOI: 10.1016/j.heliyon.2024.e24732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
The combustion of liquid fuels as energy sources for transportation and power generation has necessitated governments worldwide to direct petroleum refineries to produce sulphur-free fuels for environmental sustainability. This review highlights the novel application of artificial intelligence for optimizing and predicting adsorptive desulphurization operating parameters and green isolation conditions of nanocellulose crystals from lignocellulosic biomass waste. The shortcomings of the traditional modelling and optimization techniques are stated, and artificial intelligence's role in overcoming them is broadly discussed. Also, the relationship between nanotechnology and artificial intelligence and the future perspectives of fourth industrial revolution (4IR) technologies for optimization and modelling of the adsorptive desulphurization process are elaborately discussed. The current study surveys different adsorbents used in adsorptive desulphurization and how biomass-based nanocellulose crystals (green adsorbents) are suitable alternatives for achieving cleaner fuels and environmental sustainability. Likewise, the present study reports the challenges and potential solutions to fully implementing 4IR technologies for effective desulphurization of liquid fuels in petroleum refineries. Hence, this study provides insightful information to benefit a broad audience in waste valorization for sustainability, environmental protection, and clean energy generation.
Collapse
Affiliation(s)
- Oluwagbenga A. Olawuni
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Olawumi O. Sadare
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
- Department of Chemical Engineering, Water Innovation and Research Centre (WIRC), University of Bath, Claveton Down, Bath, North East Somerset, BA27AY, South West, United Kingdom
| | - Kapil Moothi
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
- School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
5
|
Yerizam M, Jannah AM, Aprianti N, Yandriani Y, Rendana M, Ernas AQ, Tamba JL. Bioethanol production from coconut husk using DES-NADES pretreatment and enzymatic hydrolysis method. CR CHIM 2023. [DOI: 10.5802/crchim.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
6
|
Aili Hamzah AF, Hamzah MH, Che Man H, Jamali NS, Siajam SI, Show PL. Subcritical Water Pretreatment for Anaerobic Digestion Enhancement: A Review. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.2.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
This work reviews hydrothermal subcritical water pretreatment to enhance biogas production through anaerobic digestion. The complexity of the lignocellulosic structure has been the main limitation contributing to unsatisfactory biogas production throughout the anaerobic digestion. The high resistance of the structure to biological hydrolysis has increased the interest in applying pretreatment prior to anaerobic digestion to facilitate hydrolysis. Hydrothermal subcritical water technology, an environmentally friendly pretreatment that uses water as the main medium, is gaining prominence in biogas enhancement. However, the subcritical water pretreatment influence on structural properties, biogas production, and the production of anaerobic process inhibitors signifies a knowledge gap and needs an evaluation. This review presents the need for pretreatment reaction and properties in the subcritical water region, biogas production from subcritical water pre-treated waste, production of inhibitors, and its challenges are discussed. This pretreatment could be a promising option and further enhance biogas production throughout the anaerobic digestion process.
Collapse
|
7
|
Optimization of Wheat Straw Conversion into Microbial Lipids by Lipomyces tetrasporus DSM 70314 from Bench to Pilot Scale. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Microbial lipids are renewable platforms for several applications including biofuels, green chemicals, and nutraceuticals that can be produced from several residual carbon sources. Lignocellulosic biomasses are abundant raw materials for the production of second-generation sugars with conversion yields depending on the quality of the hydrolysates and the metabolic efficiency of the microorganisms. In the present work, wheat straw pre-treated by steam explosion and enzymatically hydrolysed was converted into microbial lipids by Lipomyces tetrasporus DSM 70314. The preliminary optimization of the enzymatic hydrolysis was performed at the bench scale through the response surface methodology (RSM). The fermentation medium and set-up were optimized in terms of the nitrogen (N) source and carbon-to-nitrogen (C/N) ratio yielding to the selection of soy flour as a N source and C/N ratio of 160. The bench scale settings were scaled-up and further optimized at the 10 L-scale and finally at the 50 L pilot scale bioreactor. Process optimization also included oxygen supply strategies. Under optimized conditions, a lipid concentration of 14.8 gL−1 was achieved corresponding to a 23.1% w/w lipid yield and 67.4% w/w lipid cell content. Oleic acid was the most abundant fatty acid with a percentage of 57%. The overall process mass balance was assessed for the production of biodiesel from wheat straw.
Collapse
|
8
|
Statistical optimization of bioethanol production from giant reed hydrolysate by Candida tropicalis using Taguchi design. J Biotechnol 2022; 360:71-78. [PMID: 36272574 DOI: 10.1016/j.jbiotec.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 12/12/2022]
Abstract
The economic production of bioethanol as a sustainable liquid fuel is particularly needed and attractive. Giant reed as a low-cost and renewable biomass can be utilized as a sustainable feedstock for bioethanol development. The current research focuses on optimizing the fermentation parameters to increase ethanol concentration while lowering production costs. In this work, the giant reed was hydrolyzed thermochemically using HCl; cellulose and hemicellulose fractions were maximally converted at optimized hydrolysis conditions (5% HCl, 30 min, and 120 °C), resulting in a high sugar concentration (≈ 55 g/L), which were fermented by Candida tropicalis Y-26 for bioethanol production (≈ 15 g/L). Taguchi design was used to optimize the fermentation parameters (temperatures, pH, incubation period, and nitrogen sources). Under optimum fermentation conditions (25 °C; 24 h.; pH 5.5; and ammonium nitrate as a nitrogen source), the ethanol concentration at flask level accomplished ≈ 21 g/L, while its scale-up to bioreactor level contributed ≈ 25 g/L (equivalent to 250 kg ethanol/ton biomass) with ≈ 67% increase than the fermentation under unoptimized conditions. Overall, these findings proved that optimizing the fermentation parameters by Taguchi design and scaling up at a bioreactor could improve bioethanol production from giant reed biomass.
Collapse
|
9
|
Subcritical Water as Pretreatment Technique for Bioethanol Production from Brewer's Spent Grain within a Biorefinery Concept. Polymers (Basel) 2022; 14:polym14235218. [PMID: 36501611 PMCID: PMC9738787 DOI: 10.3390/polym14235218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Bioeconomy and environmental issues envisage industrial by-products such as Brewer's spent grain (BSG) as renewable resources for their recycling and reuse within a biorefinery concept. This study aimed to investigate the production of bioethanol from subcritical water (subW) pretreated BSG, following the conversion of the BSG biopolymers cellulose and hemicelluloses. The subW pretreatment was performed in a batch reactor at 174 °C, during 60 min and 5% (w/v) of dry BSG charge. The behavior of BSG biopolymers under subW pretreatment was monitored by evaluating the chemical composition of the liquid and solid streams and the chemical and structural changes caused in the solid residues by scanning electron microscope (SEM), CHNS elemental analysis and water retention value (WRV). The production of bioethanol from subW-pretreated BSG was assessed by separate hydrolysis and fermentation (SHF) and also by simultaneous saccharification and fermentation (SSF) by using the enzymatic cocktail Celluclast 1.5 L (40 FPU/gsolids) and the yeast Ethanol Red®. The higher bioethanol productivity (1.073 g∙L-1∙h-1) and concentration (32.18 g/L) were achieved by SSF with higher solids' loading (25%) and following a fed-batch strategy. These results suggest that subcritical water pretreatment is a promising technology for the valorization of BSG as a feedstock for second-generation bioethanol production.
Collapse
|
10
|
Pretreatment of Wheat Straw Lignocelluloses by Deep Eutectic Solvent for Lignin Extraction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227955. [PMID: 36432056 PMCID: PMC9697946 DOI: 10.3390/molecules27227955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
In order to increase the fractionation efficiency of the wheat straw, a deep eutectic solvent (DES) system consisting of chlorine/lactic acid was used in this study for wheat straw pretreatment. The outcomes exhibited that DES pretreatment significantly enhanced the capability to extract lignin, retain cellulose, and remove hemicellulose. The best condition for the pretreatment of wheat straw was 150 °C for 6 h. The process retained most cellulose in the pretreated biomass (49.94-73.60%), and the enzymatic digestibility of the pretreatment residue reached 89.98%. Further characterization of lignin showed that the high yield (81.54%) and the high purity (91.33%) resulted from the ether bond cleavage in lignin and the connection between hemicellulose and lignin. As for application, the enzymatic hydrolysis of the best condition reached 89.98%, and the lignin also had suitable stability. The investigation exhibited that DES pretreatment has the potential to realize an efficient fractionation of lignocellulosic biomass into high-applicability cellulose and lignin of high-quality.
Collapse
|
11
|
Chen J, Zhang B, Liu B, Yi Y, Shan Y, Zhou Y, Wang X, Lü X. Full components conversion of lignocellulose via a closed-circuit biorefinery process on a pilot scale. ENVIRONMENTAL RESEARCH 2022; 214:113946. [PMID: 35870504 DOI: 10.1016/j.envres.2022.113946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This study developed a closed-circuit biorefinery process for full conversion of lignocellulose into ethanol, biogas and organic fertilizer with zero waste on a pilot scale. In the process, subcritical water pretreatment could effectively break the structure of wheat straw (WS), and ethanol was obtained from pretreated wheat straw (PWS) using two batches of simultaneous saccharification and fermentation (SSF). The pretreatment and ethanol fermentation wastes were reused for biogas and organic fertilizer production by anaerobic digestion (AD), whereas the pretreatment and ethanol conversion efficiency were reduced when supernatant after AD was recovered for next batch pretreatment. The yields of ethanol (0.08-0.09 g/g), biogas (0.05-0.10 L/g) and organic fertilizer (0.55-0.79 g/g) were demonstrated through mass balance. Furthermore, the hidden problems were exposed on pilot-scale conversion process, and several strategies were provided for optimizing the biorefinery process in the future.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Biying Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Aili Hamzah AF, Hamzah MH, Mazlan NI, Che Man H, Jamali NS, Siajam SI, Show PL. Optimization of subcritical water pre-treatment for biogas enhancement on co-digestion of pineapple waste and cow dung using the response surface methodology. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:98-109. [PMID: 35810730 DOI: 10.1016/j.wasman.2022.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The optimal pre-treatment method and conditions depend on the types of lignocellulose present due to the complexity and the variability of biomass chemical structures. This study optimized subcritical water pre-treatment to ensure maximum methane production from pineapple waste prior to anaerobic co-digestion with cow dung using the response surface methodology. A central composite design was achieved with three different factors and one response. A total of 20 pre-treatment runs were performed at different temperatures, reaction times and water to solid ratios suggesting optimum values for subcritical water pre-treatment at 128.52℃ for 5 min with 5.67 to 1 water to solid ratio. Under these conditions, methane yield increased from 59.09 to 85.05 mL CH4/g VS with an increase of 23% biogas yield and 44% methane yield from the untreated. All pre-treatments above 200℃ showed reductions in biogas yield. Compositional analysis showed slight reduction of lignin and increase in α-cellulose content after the pre-treatment. Analysis using Fourier transform infrared spectroscopy and thermogravimetric analysis verified the presence of cellulosic material in pre-treated pineapple waste. Most of the hemicellulose was solubilized in the liquid samples after SCW pre-treatment. The crystallinity index of pineapple waste was reduced from 57.58% (untreated) to 54.29% (pre-treated). Scanning electron microscopy confirmed the structural modification of pre-treated pineapple waste for better microbial attack. Subcritical water pre-treatment is feasible as a promising method to enhance the anaerobic co-digestion process. Further study should be conducted to assess the scale-up of the process from pre-treatment to anaerobic digestion at the pilot plant level.
Collapse
Affiliation(s)
- A F Aili Hamzah
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M H Hamzah
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Smart Farming Technology Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - N I Mazlan
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - H Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Smart Farming Technology Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - N S Jamali
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - S I Siajam
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - P L Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| |
Collapse
|
13
|
Predictive Modeling of Bioenergy Production from Fountain Grass Using Gaussian Process Regression: Effect of Kernel Functions. ENERGIES 2022. [DOI: 10.3390/en15155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Experimental studies have shown that bioethanol production from biomass sources has been reported to be influenced by several process parameters. It is not entirely known, however, how the interaction of these factors affects the concentration of bioethanol production. In this study, the use of Gaussian Process Regression (GPR) in predictive modeling of bioethanol production from fountain grass has been investigated. Parametric analysis showing the interaction effect of time, pH, temperature, and yeast extract on the bioethanol production was examined. The effect of kernel functions on the performance of the GPR in modeling the prediction of bioenergy output was also examined. The study shows that the kernel function, namely, rotational quadratic (RQGPR), squared exponential (SEGPR), Matern 5/2 (MGPR), exponential (EGPR), and the optimizable (Opt.GPR.), had varying effects on the performance of the GPR. Coefficients of determination (R2) of 0.648, 0.670, 0.667, 0.762, and 0.993 were obtained for the RQGPR, SEGPR, MGPR, EGPR, OptGPR, respectively. The OptGPR with R2 of 0.993 and RMSE of 45.13 displayed the best performance. The input parameters analysis revealed that the pH of the fermentation medium significantly influences bioethanol production. A proper understanding of how the various process variables affect bioethanol production will help in the real-time optimization of the process in the eventuality of scale-up.
Collapse
|
14
|
Di Domenico Ziero H, Ampese LC, Sganzerla WG, Torres-Mayanga PC, Timko MT, Mussatto SI, Forster-Carneiro T. Subcritical water hydrolysis of poultry feathers for amino acids production. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Rebolledo-Leiva R, Moreira MT, González-García S. Environmental assessment of the production of itaconic acid from wheat straw under a biorefinery approach. BIORESOURCE TECHNOLOGY 2022; 345:126481. [PMID: 34864171 DOI: 10.1016/j.biortech.2021.126481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
This study performs the environmental assessment of itaconic acid (IA) production from wheat straw. The Life Cycle Assessment (LCA) methodology is used to determine the environmental hotspots, considering impact categories such as Global Warming (GW), Fossil Resource Scarcity (FRS), Water Consumption (WC), among others. A sensitivity analysis was performed considering an optimization of the steam explosion process and 100% renewable energy. Results report an impact of about 14.33 kg CO2 eq in GW, 4.15 kg of oil eq in FRS, for each kg of IA produced for the baseline scenario. Moreover, the pretreatment and fermentation stages constitute hotspots of the IA production. In addition, using a renewable energy source in production would reduce the impact by 82% in GW, 71% in PM and 82% in FRS categories. The optimization of the steam explosion process presents a better performance in GW and FRS but also lies in an increase in WC.
Collapse
Affiliation(s)
- Ricardo Rebolledo-Leiva
- CRETUS. Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Maria Teresa Moreira
- CRETUS. Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Sara González-García
- CRETUS. Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
16
|
Saravanan A, Senthil Kumar P, Jeevanantham S, Karishma S, Vo DVN. Recent advances and sustainable development of biofuels production from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 344:126203. [PMID: 34710606 DOI: 10.1016/j.biortech.2021.126203] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Many countries in the world are facing the demand for non-renewable fossil fuels because of overpopulation and economic boom. To reduce environmental pollution and zero carbon emission, the conversion of biomass into biofuels has paid better attention and is considered to be an innovative approach. A diverse raw material has been utilized as feedstock for the production of biofuel, depending on the availability of biomass, cost-effectiveness, and their geographic location. Among the different raw materials, lignocellulosic biomass has fascinated many researchers around the world. The current review discovers the potential application of lignocellulosic biomass for the production of biofuels. Various pretreatment methods have been widely used to increase the hydrolysis rate and accessibility of biomass. This review highlights recent advances in pretreatment methodologies for the enhanced production of biofuels. Detailed descriptions of the mechanism of biomass processing pathway, optimization, and modeling study have been discussed.
Collapse
Affiliation(s)
- A Saravanan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
17
|
Wang Y, Van Le Q, Yang H, Lam SS, Yang Y, Gu H, Sonne C, Peng W. Progress in microbial biomass conversion into green energy. CHEMOSPHERE 2021; 281:130835. [PMID: 33992848 DOI: 10.1016/j.chemosphere.2021.130835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The increase in global population size over the past 100 decades has doubled the requirements for energy resources. To mitigate the limited fossil fuel available, new clean energy sources being environmental sustainable for replacement of traditional energy sources are explored to supplement the current scarcity. Biomass containing lignin and cellulose is the main raw material to replace fossil energy given its abundance and lower emission of greenhouse gases and NOx when transformed into energy. Bacteria, fungi and algae decompose lignocellulose leading to generation of hydrogen, methane, bioethanol and biodiesel being the clean energy used for heating, power generation and the automobile industry. Microbial Fuel Cell (MFC) uses microorganisms to decompose biomass in wastewater to generate electricity and remove heavy metals in wastewater. Biomass contains cellulose, hemicellulose, lignin and other biomacromolecules which need hydrolyzation for conversion into small molecules by corresponding enzymes in order to be utilized by microorganisms. This paper discusses microbial decomposition of biomass into clean energy and the five major ways of clean energy production, and its economic benefits for future renewable energy security.
Collapse
Affiliation(s)
- Yacheng Wang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Han Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark.
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
18
|
Ismail H, Mohamad H. Bioactivity and Biocompatibility Properties of Sustainable Wollastonite Bioceramics from Rice Husk Ash/Rice Straw Ash: A Review. MATERIALS 2021; 14:ma14185193. [PMID: 34576417 PMCID: PMC8465399 DOI: 10.3390/ma14185193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/04/2022]
Abstract
Recently, there has been an increase in interest in agricultural waste in scientific, technological, environmental, economic, and social contexts. The processing of rice husk ash/rice straw ash into biocompatible products—also known as biomaterials—used in biomedical implants is a technique that can enhance the value of agricultural waste. This method has effectively converted unprocessed agricultural waste into high-value products. Rice husk and straw are considered to be unwanted agricultural waste and are largely discarded because they pollute the environment. Because of the related components present in bone and teeth, this waste can produce wollastonite. Wollastonite is an excellent material for bone healing and implants, as well as tissue regeneration. The use of rice husk ash or rice straw ash in wollastonite production reduces the impact of agricultural waste on pollution and prompts the ensuing conversion of waste into a highly beneficial invention. The use of this agricultural waste in the fabrication of wollastonite using rice husk ash or rice straw ash was investigated in this paper. Wollastonite made from rice husk ash and rice straw ash has a fair chance of lowering the cost of bone and tooth repair and replacement, while having no environmental effects.
Collapse
|
19
|
Li J, Liu F, Yu H, Li Y, Zhou S, Ai Y, Zhou X, Wang Y, Wang L, Peng L, Wang Y. Diverse Banana Pseudostems and Rachis Are Distinctive for Edible Carbohydrates and Lignocellulose Saccharification towards High Bioethanol Production under Chemical and Liquid Hot Water Pretreatments. Molecules 2021; 26:molecules26133870. [PMID: 34202856 PMCID: PMC8270323 DOI: 10.3390/molecules26133870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Banana is a major fruit crop throughout the world with abundant lignocellulose in the pseudostem and rachis residues for biofuel production. In this study, we collected a total of 11 pseudostems and rachis samples that were originally derived from different genetic types and ecological locations of banana crops and then examined largely varied edible carbohydrates (soluble sugars, starch) and lignocellulose compositions. By performing chemical (H2SO4, NaOH) and liquid hot water (LHW) pretreatments, we also found a remarkable variation in biomass enzymatic saccharification and bioethanol production among all banana samples examined. Consequently, this study identified a desirable banana (Refen1, subgroup Pisang Awak) crop containing large amounts of edible carbohydrates and completely digestible lignocellulose, which could be combined to achieve the highest bioethanol yields of 31–38% (% dry matter), compared with previously reported ones in other bioenergy crops. Chemical analysis further indicated that the cellulose CrI and lignin G-monomer should be two major recalcitrant factors affecting biomass enzymatic saccharification in banana pseudostems and rachis. Therefore, this study not only examined rich edible carbohydrates for food in the banana pseudostems but also detected digestible lignocellulose for bioethanol production in rachis tissue, providing a strategy applicable for genetic breeding and biomass processing in banana crops.
Collapse
Affiliation(s)
- Jingyang Li
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 570102, China
| | - Fei Liu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Hua Yu
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Yuqi Li
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Shiguang Zhou
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Yuanhang Ai
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Xinyu Zhou
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Youmei Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Lingqiang Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530000, China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (F.L.); (H.Y.); (S.Z.); (Y.A.); (X.Z.); (Y.W.); (L.W.); (L.P.)
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China;
- Correspondence:
| |
Collapse
|
20
|
Huang LZ, Ma MG, Ji XX, Choi SE, Si C. Recent Developments and Applications of Hemicellulose From Wheat Straw: A Review. Front Bioeng Biotechnol 2021; 9:690773. [PMID: 34239863 PMCID: PMC8258147 DOI: 10.3389/fbioe.2021.690773] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Hemicellulose is an important component of plant cell walls, which is mainly used in biofuels and bioproducts. The hemicellulose extracted from different plant sources and plant locations has different microstructure and molecule. Wheat straw is an important biomass raw material for the extraction of hemicellulose. The aims of this review are to summary the recent developments and various applications of hemicellulose from wheat straw. The microstructure and molecule of hemicellulose extracted by different methods are comparably discussed. The hemicellulose-based derivatives and composites are also reviewed. Special attention was paid to the applications of hemicellulose such as biofuel production, packaging field, and adsorbent. The problems and developing direction were given based on our knowledge. We expect that this review will put forward to the development and high-value applications of hemicellulose from wheat straw.
Collapse
Affiliation(s)
- Ling-Zhi Huang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Ming-Guo Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Xing-Xiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, South Korea
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|