1
|
Jin L, Li C, Addou AM, Huang Y, Li H. Remediation of antibiotic pollution in the global environment by iron-based materials activating advanced oxidation processes: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125519. [PMID: 40306215 DOI: 10.1016/j.jenvman.2025.125519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Antibiotic pollution and its associated resistance genes have emerged as a global environmental and health concern, with widespread detection in various environmental media such as water, soil, atmosphere, and sediment, as well as in organisms. Hence, it is imperative to develop effective remediation technologies for the targeted treatment of antibiotic pollution to mitigate its environmental and health risks. This paper reviews the status of antibiotic pollution in major countries, territories, and regions worldwide. Addressing the risks cause by antibiotics and their resistance genes and achieving efficient remediation of antibiotic pollutants. Additionally, the study explores the issue of antibiotic use and resistance in detail from a global perspective. It provides a critical scientific foundation for controlling global antibiotic resistance through multi-dimensional integrated analysis. In 2021, 4.71 million deaths globally were attributed to antibiotic resistance, with countries such as India and China being the most affected. It also examined the predominant types and sources of antibiotic pollutants, as well as key remediation technologies for addressing antibiotic contamination. Antibiotics such as amoxicillin and ciprofloxacin are commonly found in surface waters at concentrations ranging from 1 to 120 μg L-1. Furthermore, this paper highlighted the distinctive advantages of advanced oxidation processes (AOPs) in addressing antibiotic pollution, demonstrating removal efficiencies exceeding 90 % under optimal conditions. Our review underscored the pivotal role of iron-based materials and porous biochar in AOPs, showing promising results in various environmental settings. Future research should prioritize the development of multifunctional iron-based composites with improved catalytic stability, environmental compatibility, and recyclability. Moreover, expanding the field-scale application of these materials, particularly in low-resource or high-risk regions, will be essential to translate laboratory successes into global impact. This analysis is designed to inform and guide future initiatives to control and eliminate antibiotic contamination.
Collapse
Affiliation(s)
- Lide Jin
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chunyang Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Amira Mama Addou
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yuan Huang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Hui Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
2
|
Huang M, Liu HZ, Huang QQ, Zhou T, Wu X, Li WW, Yu HQ. Self-Activated Heterogeneous Fenton Process for Accelerated Degradation of Aromatic Pollutants over Copper Oxide Catalysts. Angew Chem Int Ed Engl 2025:e202508754. [PMID: 40387644 DOI: 10.1002/anie.202508754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/20/2025]
Abstract
Metal-based heterogeneous catalysts have been commonly adopted for Fenton-like oxidation of organic pollutants, but generally suffer from inadequate activity in practical water treatment applications due to surface passivation by accumulated pollutants and sluggish redox cycling of active metal. Here, we observed an unusual phenomenon of pollutant-induced activity enhancement for copper oxide (CuO) in H2O2 activation and phenol degradation, which is in sharp contrast to considerable activity decay of Fe2O3 catalyst. The CuO was found to stabilize and activate phenol via ligand-to-metal charge transfer route, generating surface-bound phenoxyl radicals for further mediating the H2O2 activation and enabling a rapid regeneration of low-valent Cu. Based on this principle, a Fe-Cu bimetal oxides catalyst was elaborated to further augment the catalyst-phenol interaction towards self-activated Fenton oxidation. The optimal catalyst achieved 14-time faster pollutant degradation rate and 2 order-of-magnitude higher H2O2 utilization efficiency than the Fe2O3 control. It also demonstrated good adaptability to degradation of diverse substituted benzenes and maintained stable performance for treatment of real lake water during 100-day continuous operation. Our work implies that the catalyst-pollutant interaction may be rationally leveraged and modulated to create highly efficient and stable heterogeneous catalytic systems, thus further unlocking their potential for sustainable water purification application.
Collapse
Affiliation(s)
- Mingjie Huang
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong-Zhi Liu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qing-Qing Huang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tao Zhou
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohui Wu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wen-Wei Li
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Li C, Shi L, Ding J, Zhao Q, Dong K, Liu T, Zhang Y. Enhancing the aging of polystyrene microplastics through a flow-through electrochemical membrane system: Mechanism of confinement effect. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137478. [PMID: 39908763 DOI: 10.1016/j.jhazmat.2025.137478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/12/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Microplastics (MPs) are emerging pollutants in aquatic environments that pose serious health risks, and traditional wastewater treatments are ineffective at removing them. In this study, a flow-through electrochemical membrane (F-T) system was developed to simultaneously separate and age polystyrene microplastics (PS-MPs) in water. Under membrane pressure, PS-MPs were tightly pressed onto the surface of membrane electrode, forming a confinement space. The confinement effect overcomes the short lifetime of free radicals and accelerates the aging process of PS-MPs. This study identified the optimal conditions for aging PS-MPs in the F-T system, characterized the material properties before and after aging, and analyzed the degradation intermediates. After 8 h of treatment, the oxygen-to-carbon ratio (O/C) of the PS-MPs following the F-T system was 2.00 times greater than that following the traditional flow-by (F-B) system. In addition, the unit energy consumption (kW·h/g) for the aging of PS-MPs in the F-T system was 645.19 kW·h/g, which was 3.70 times lower than the F-B system. Free radicals, especially O2•- and •OH, played a major role in PS-MPs aging. Free radicals attack the main chain of PS-MPs, leading to subsequent chain breakage, hydrogen abstraction, and rearrangement reactions. After aging in the F-T system, the crystallinity, molecular weight, and zeta potential of the PS-MPs significantly decreased. In addition, carbon-centered environmental persistent free radicals formed on the surface of the PS-MPs. This study presents an energy-efficient method for the remediation of MPs in water and suggests that the aging efficiency can be increased through confinement.
Collapse
Affiliation(s)
- Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lixia Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Keke Dong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tao Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yunshu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
4
|
Liu W, Zhou F, Yang H, Shi Y, Qin Y, Sun H, Zhang L. CuS enabled efficient Fenton-like oxidation of phenylarsonic acid and inorganic arsenic immobilization. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136171. [PMID: 39413521 DOI: 10.1016/j.jhazmat.2024.136171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Herein, copper sulfide (CuS) was introduced to the Fenton-like (Fe(III)/H2O2) system for the efficient removal of phenylarsonic acid (PAA). Results of reactive oxygen and Fe/Cu species showed that CuS preferentially reacted with Fe(III) and H2O2 to generate Cu(I) and superoxide anion (•O2-). These reductive species could efficiently promote the Fe(III)/Fe(II) and Cu(II)/Cu(I) cycles, and are beneficial to the sequential Fenton reaction to generate •OH. The organoic/inorganic arsenic species detected in the CuS/Fe(III)/H2O2 system confirmed that PAA was oxidized by •OH to hydroxylated organoarsenic and phenolic intermediates, which were further mineralized to oxalate and formic acid. Meanwhile, the inorganic As(III)/As(V) released during PAA degradation were efficiently immobilized by CuS. The PAA removal efficiency remained as high as 92.9 % after 5 cycles of the CuS-mediated Fenton-like process. These results demonstrate an innovative method for the treatment of organoarsenic-contaminated water, and provide new insights into the enhanced Fenton-like process utilizing sulfide minerals.
Collapse
Affiliation(s)
- Wei Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Fengfeng Zhou
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Huan Yang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yunxiao Shi
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yaxin Qin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
5
|
Xiong W, Huang Q, Li L, Li Y. Effect of Fenton-Based Processes on Arsenic Removal in the Presence of Humic Acid. TOXICS 2024; 12:845. [PMID: 39771060 PMCID: PMC11679137 DOI: 10.3390/toxics12120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Geogenic arsenic (As) contamination in groundwater poses a significant public health risk in many regions worldwide. Previous studies have reported hydrogen peroxide (H2O2) concentrations ranging from 5.8 to 96 μmol L-1 in rainwater, which may contribute to the oxidation and removal of As. However, the influence of natural organic matter, such as humic acid (HA), on rainwater-borne H2O2-induced Fenton processes for the oxidation and removal of As remains unclear. In this study, the Fenton process was employed to investigate changes in As(V), As(III), and their mixtures, both in the presence and absence of HA. The results showed that low concentrations of HA (0-10 mg/L) promoted the oxidation of As(III) and removal of As(V) when As(V) and As(III) were present individually. However, when As(V) and As(III) coexisted, HA inhibited the Fenton process for As(V) removal. This inhibition was likely due to As(III) competing strongly with HA for hydroxyl radicals in the Fenton reaction system. Additionally, the presence of HA hindered the Fe(III)-driven removal of As(V), a product of the Fenton reaction. These findings further enhance our understanding of the potential role of rainwater-borne H2O2 in the transformation of As species in open water environments.
Collapse
Affiliation(s)
- Wenming Xiong
- Guangzhou Vocational College of Technology & Business, Guangzhou 511442, China;
| | - Qixuan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Q.H.); (L.L.)
| | - Langlang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (Q.H.); (L.L.)
| | - Yongjun Li
- Guangzhou Vocational College of Technology & Business, Guangzhou 511442, China;
| |
Collapse
|
6
|
Gao Y, Chen Q, Shen X, Yao S, Jiang Z, Ma S, Yang H, Li J, Lin Z, Liu X. UiO-66(Zr)-2OH-Supported Pd 0 NP Catalysts Accelerated a Fenton-Like Reaction: Iron Cycling and Hydrogen Peroxide Generation Achieved Simultaneously. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62171-62184. [PMID: 39472458 DOI: 10.1021/acsami.4c13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Both the sluggish kinetics of Fe(II) regeneration and usage restriction of H2O2 have severely hindered the scientific progress of the Fenton reaction toward practical applications. Herein, a reduction strategy of activated hydrogen, which was used to simultaneously generate H2O2 and accelerate the regeneration of ferrous in a Fenton-like reaction based on the reduction of activated hydrogen derived from H2, was proposed. Two types of composite catalysts, namely, Pd/UiO-66(Zr)-2OH and Pd@UiO-66(Zr)-2OH, were successfully prepared by loading nano-Pd particles onto the outer and inner pores of UiO-66(Zr)-2OH in different loading modes, respectively. They were used to enhance the reduction of activated hydrogen. The characterization results based on the analysis of scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy revealed that the materials were successfully prepared. By using a trace amount of ferrous iron and without adding H2O2, trimethoprim (C0 = 20 mg·L-1), as a target pollutant, could be nearly 100% degraded within 180 min in the reaction system composed of these two materials. The cycle of iron and the self-generation of H2O2 were verified by the detection of ferrous H2O2 in the system. Density functional theory calculation results further confirmed that the pore-filled Pd0 NPs, as the main catalytic site for Pd@UiO-66(Zr)-2OH, could produce H2O2 under the combined action of hydrogen and oxygen. The Pd@UiO-66(Zr)-2OH system had excellent stability after multiple applications (at least 6 cycles), all of which resulted in 100% removal of trimethoprim. The degradation efficiency of the Pd/UiO-66(Zr)-2OH system for TMP gradually decreased from 97 to 80% after six cycles. The results of electron paramagnetic resonance combined with classical radical burst experiments revealed the degradation pathways in the reaction system with hydroxyl radicals and singlet oxygen as the main reactive oxygen particles.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Qinqin Chen
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Xinhao Shen
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Shuang Yao
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Zhiwen Jiang
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Sanjian Ma
- Suzhou Kete Environmental Protection Co., Ltd., Suzhou 215156, Jiangsu, China
| | - Hailiang Yang
- Suzhou Kete Environmental Protection Co., Ltd., Suzhou 215156, Jiangsu, China
| | - Juanhong Li
- Changzhou Vocational Institute of Engineering, Changzhou 213164, Jiangsu, China
| | - Zixia Lin
- Testing Center, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xin Liu
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| |
Collapse
|
7
|
Deng J, Liu Y, Gui S, Yi Q, Nie H. Nano silver oxide-modified activated carbon as a novel catalyst for efficient removal of bacteria and micropollutants in aquatic environment. RSC Adv 2024; 14:30180-30191. [PMID: 39315016 PMCID: PMC11418389 DOI: 10.1039/d4ra04604h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Heterogeneous Fenton process is a promising water treatment technology for sterilization and degradation of organic pollutants, due to the strong oxidation of hydroxyl radicals (OH˙) generated. However, the low H2O2 activation efficiency and the instability of catalyst leading to low OH˙ production restricted development of this technology. Herein, we synthesized a novel porous activated carbon-loaded nano silver oxide (nAg2O/AC) catalyst to enhance the activation of H2O2 for removing bacteria (E. coli) and micropollutants (Tetracycline, TC) from water. In the nAg2O/AC Fenton system, reductive hydroxyl groups on AC accelerated Ag(i)/Ag cycle through mediated electron transfer, which markedly increased H2O2 activation efficiency to 73.7% (About 2.9 times that of traditional Fenton). Hence, nAg2O/AC Fenton achieved up to 6.0 log and 100% removal efficiency for E. coli and TC, respectively. The OH˙ as the major oxidizing species in nAg2O/AC Fenton system was detected and verified by radical scavenging tests and electron spin resonance (ESR) measurement. After 4 and 5 cycles of experiments, the removal of E. coli and TC still reached 5.2 log and 96%, respectively, confirming good stability of nAg2O/AC for considerable application prospects. This study concluded that nAg2O/AC is a promising H2O2 catalyst for simultaneous removal of bacteria and micropollutants in aqueous environment.
Collapse
Affiliation(s)
- Jianping Deng
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| | - Yong Liu
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| | - Shuanglin Gui
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| | - Qizhen Yi
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| | - Hanbing Nie
- Institute of Energy Research, Jiangxi Academy of Sciences Nanchang 330096 China
- Jiangxi Carbon Neutralization Research Center Nanchang 330096 China
| |
Collapse
|
8
|
Li B, Li W, Zuo Q, Yin W, Li P, Wu J. Enhanced Cr(VI) elimination from water by goethite-impregnated activated carbon coupled with weak electric field. ENVIRONMENTAL RESEARCH 2024; 248:118253. [PMID: 38278507 DOI: 10.1016/j.envres.2024.118253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/08/2023] [Accepted: 12/03/2023] [Indexed: 01/28/2024]
Abstract
A weak electric field (WEF, 2 mA cm-2) was employed to promote Fe(III)/Fe(II) cycle on goethite-impregnated activated carbon (FeOOH@AC) filled in a continuous-flow column for enhanced Cr(VI) elimination from water. Surficial analysis and Cr species distribution showed that α-FeOOH of 0.2-1 μm was successfully synthesized and evenly loaded onto AC. Electron transfer from WEF to α-FeOOH was facilitated with AC as electron shuttles, thereby boosting Fe(III) reduction in the α-FeOOH. The generated Fe(II) reduced Cr(VI) and the resultant Cr(III) subsequently precipitated with OH- and Fe(III) to form Cr(OH)3 and (CrχFe1-χ)(OH)3. Therefore, the WEF-FeOOH@AC column exhibited a much lower Cr(VI) migration rate of 0.0018 cm PV-1 in comparison with 0.0037 cm PV-1 of the FeOOH@AC column, equal to 104 % higher Cr(VI) elimination capacity and 90 % longer column service life-span. Additionally, under different Cr(VI) loadings by varying either seepage velocities or influent Cr(VI) concentrations, the WEF-FeOOH@AC column maintained 1.0-1.5 folds higher Cr(VI) elimination and 0.9-1.4 folds longer longevity than those of the FeOOH@AC column owing to the interaction between FeOOH@AC and WEF. Our research demonstrated that WEF-FeOOH@AC was a potential method to promote Cr(VI) elimination from water and offer an effective strategy to facilitate Fe(III)/Fe(II) cycle in iron oxides.
Collapse
Affiliation(s)
- Bing Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Weiquan Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Qian Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Weizhao Yin
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Liu X, Chen Z, Lu S, Shi X, Qu F, Cheng D, Wei W, Shon HK, Ni BJ. Persistent free radicals on biochar for its catalytic capability: A review. WATER RESEARCH 2024; 250:120999. [PMID: 38118258 DOI: 10.1016/j.watres.2023.120999] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
Biochar is an economical carbon material for water pollution control, which shows great promise to be applied in the up-scale wastewater remediation processes. Previous studies demonstrate that persistent free radicals (PFRs) on biochar are critical to its reactivity for wastewater remediation. A series of studies have revealed the important roles of PFRs when biochar was applied for organic pollutants degradation as well as the removal of Cr (VI) and As (III) from wastewater. Therefore, this review comprehensively concludes the significance of PFRs for the catalytic capabilities of biochar in advanced oxidation processes (AOPs)-driven organic pollutant removal, and applied in redox processes for Cr (VI) and As (III) remediation. In addition, the mechanisms for PFRs formation during biochar synthesis are discussed. The detection methods are reviewed for the quantification of PFRs on biochar. Future research directions were also proposed on underpinning the knowledge base to forward the applications of biochar in practical real wastewater treatment.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Xingdong Shi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fulin Qu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; UNSW Water Research Centre, School of Civil and Environmental Engineering, The University New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Moja MM, Mapossa AB, Chirwa EMN, Tichapondwa S. Photocatalytic degradation of 2,4-dichlorophenol using nanomaterials silver halide catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11857-11872. [PMID: 38224437 PMCID: PMC10869396 DOI: 10.1007/s11356-024-31921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
In this study, the photocatalytic activity of nanomaterials Ag/AgX (X = Cl, Br, I) is reported. Highly efficient silver halide (Ag/AgX where X = Cl, Br, I) photocatalysts were synthesized through a hydrothermal method. The samples were characterized using a range of techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) to check their structural, morphology, textural and optical properties. In addition, the photocatalytic activity of photocatalysts was evaluated through the degradation of 2,4-dichlorophenol (2,4-DCP) under UV and visible light irradiation. XRD analysis confirmed the presence of a single-phase structure (pure phase) in the synthesized photocatalysts. SEM micrographs showed agglomeration with a non-uniform distribution of particles, which is a characteristic of surfactant-free precipitation reactions in aqueous media. The Ag/AgBr photocatalyst exhibited the best degradation efficiency, resulting in 83.37% and 89.39% photodegradation after 5 h of UV and visible light irradiation, respectively. The effect of catalyst loading, initial solution pH, and 2,4-DCP concentration was investigated for the best-performing Ag/AgBr photocatalyst. The degradation kinetics were best described by the pseudo-first-order Langmuir-Hinshelwood model. The photocatalytic capacity of Ag/AgBr decreased by 50% after five reuse cycles. SEM images revealed heightened levels of photodegradation on the catalyst surface. The study proved the feasibility of using simple synthesis methods to produce visible light active photocatalysts capable of degrading refractory phenolic pollutants in aqueous systems.
Collapse
Affiliation(s)
- Mahlako Mary Moja
- Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| | - António Benjamim Mapossa
- Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa.
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | | | - Shepherd Tichapondwa
- Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
11
|
Zhang Y, Fu L, Tian F, Huang Y, Li X, Gu Y, Yang G, Qu L, Yang H. Designing carbon nanotube sponge/Au@MgO 2 for surface-enhanced Raman scattering detection and fenton-like degradation of organic pollutants. Talanta 2023; 265:124835. [PMID: 37385189 DOI: 10.1016/j.talanta.2023.124835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
With the acceleration of industry and agriculture process, the massive emission of organic pollutants is a major problem which seriously restricts the sustainable development of society. Rapid enrichment, efficient degradation and sensitive detection are three key steps to solve the problem of organic pollutants, while developing a simple method integrating the above three capabilities is still a challenge. Herein, a three-dimensional carbon nanotube sponge decorated with magnesium peroxide and gold nanoparticles (CNTs/Au@MgO2 sponge) was prepared for surface enhanced Raman scattering (SERS) detection and degradation of aromatic organics by advanced oxidation processes. The CNTs/Au@MgO2 sponge with porous structures adsorbed molecules rapidly through π-π and electrostatic interaction, thus more aromatic molecules were driven to the hot-spot areas for highly sensitive SERS detection. A detection of limit with 9.09 × 10-9 M was achieved for rhodamine B (RhB). The adsorbed molecules were degraded by an advanced oxidation process utilizing hydrogen peroxide produced by MgO2 nanoparticles under acidic condition with 99% efficiency. In addition, the CNTs/Au@MgO2 sponge exhibited high reproducibility with the relative standard deviation (RSD) at 1395 cm-1 of approximately 6.25%. The results showed the sponge can be used to effectively track the concentration of pollutants during the degradation process and maintain the SERS activity by re-modifying Au@MgO2 nanomaterials. Furthermore, the proposed CNTs/Au@MgO2 sponge demonstrated the simultaneous functions of enrichment, degradation, and detection for aromatic pollutants, thus significantly expanding the potential applications of nanomaterials in environmental analysis and treatment.
Collapse
Affiliation(s)
- Yingdi Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Lijie Fu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Fei Tian
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yi Huang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xialian Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yingqiu Gu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Guohai Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Lulu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Haipeng Yang
- College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
12
|
Muzenda C, Nkwachukwu OV, Jayeola KD, Zinyemba O, Zhou M, Arotiba OA. Heterogenous electro-Fenton degradation of sulfamethoxazole on a polyethylene glycol-coated magnetite nanoparticles catalyst. CHEMOSPHERE 2023; 339:139698. [PMID: 37532200 DOI: 10.1016/j.chemosphere.2023.139698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
We report the preparation and application of poly (ethylene) glycol (PEG) coated magnetite nanoparticles (MNPs) catalyst for the heterogeneous electro-Fenton (HEF) degradation of sulfamethoxazole in real wastewater PEG-coated MNPs of four MNP:PEG ratios were synthesised using the co-precipitation method. The synthesised MNP were characterised using FTIR, XRD, EDX, TEM, and CHN elemental analysis. It was observed that the coating of MNP with PEG influences the nanoparticle size, agglomeration tendencies and catalytic efficiency of MNPs properties in the HEF degradation process. A 1:1 optimal MNP:PEG catalyst yielded 91% sulfamethoxazole degradation and 48% total organic carbon removal in 60 min, which is an improvement of 11% over degradation with the uncoated MNP. The PEG-coated MNP showed higher stability in 10 consecutive reaction cycles, reduced leaching, and improved performance at a lower dosage and broader pH range than the uncoated MNPs. These results show that coating MNP with PEG enhances HEF catalytic performance in the degradation of sulfamethoxazole in wastewater.
Collapse
Affiliation(s)
- Charles Muzenda
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Oluchi V Nkwachukwu
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Kehinde D Jayeola
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Orpah Zinyemba
- Department of Chemical Sciences, University of Johannesburg, South Africa
| | - Minghua Zhou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa.
| |
Collapse
|
13
|
Yang Y, Wang N, Gu H. Synthesis of submicron ferrous oxalate from red mud with high Fenton catalytic performance on degradation of methylene blue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85210-85222. [PMID: 37386219 DOI: 10.1007/s11356-023-28308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Ferrous oxalate dihydrate (FOD) can be used as a photo-Fenton catalyst with remarkable photo-Fenton catalytic and photocatalytic performances on organic pollutant degradation. Various reduction processes were compared in the current study to synthesize FODs from ferric oxalate solution utilizing the iron source in alumina waste red mud (RM), including natural light exposure (NL-FOD), UV light irradiation (UV-FOD), and hydroxylamine hydrochloride hydrothermal method (HA-FOD). The FODs were characterized and employed as photo-Fenton catalysts for methylene blue (MB) degradation, and the effects of HA-FOD dosage, H2O2 dosage, MB concentration, and the initial pH were investigated. The results show that HA-FOD has submicron sizes and lower impurity contents with more rapid degradation rates and higher degradation efficiencies compared with the other two FOD products. When using 0.1 g/L of each obtained FOD, 50 mg/L of MB can be rapidly degraded by HA-FOD by 97.64% within 10 min with 20 mg/L of H2O2 at pH of 5.0, while NL-FOD and UV-FOD achieve 95.52% in 30 min and 96.72% in 15 min at the same conditions, respectively. Meanwhile, HA-FOD exhibits strong cyclic stability after two recycling experiments. Scavenger experiments reveal that the predominant reactive oxygen species responsible for MB degradation are hydroxyl radicals. These findings demonstrate that submicron FOD catalyst can be synthesized using hydroxylamine hydrochloride hydrothermal process from ferric oxalate solution with high photo-Fenton degradation efficiency and reduced reaction time for wastewater treatment. The study also provides a new pathway of efficient utilization for RM.
Collapse
Affiliation(s)
- Yuxin Yang
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Wang
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hannian Gu
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Li Y, Li Z, Bai J, Wang F. Comparative study on the treatment of refractory organics in landfill leachate by homogeneous and heterogeneous Fenton advanced oxidation processes. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1102-1113. [PMID: 36544376 DOI: 10.1177/0734242x221140032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
With the advancement of the landfill stabilization process of municipal solid waste, landfill leachate containing a large amount of refractory organic matter is formed. In this study, homogeneous Fenton and heterogeneous Fenton-like (activation by zero valent iron (Fe0), pyrite (FeS2) and magnetite (Fe3O4) as solid iron materials) processes have been compared for the removal of refractory organics from landfill leachate. The removal efficiency of organics in the Fenton process was slightly higher than those in the Fenton-like processes. The removal efficiencies based on total organic carbon, UV absorbance at 254 nm (UV254) and colour number in the Fenton process were as high as 57.42%, 71.63% and 81.03%, respectively. In the Fenton-like processes, the Fe0/H2O2 process achieved 35.74%, 66.24% and 86.29% removal efficiencies, respectively. Moreover, the degradation effect on refractory organic substances proved to be better. In the Fenton-like processes, the activation mechanisms with Fe0 and FeS2 involve the homogeneous activation of Fe2+ in solution and heterogeneous activation of iron oxides produced during the reaction, respectively. With Fe3O4, the activation mechanism is mainly a heterogeneous process involving its intrinsic iron oxide constituents. This study may provide a theoretical basis for the treatment of refractory organics in landfill leachate.
Collapse
Affiliation(s)
- Yihui Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhiheng Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jie Bai
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Fan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
- College of Environmental Science and Engineering, China West Normal University, China
| |
Collapse
|
15
|
Mei SC, Li L, Huang GX, Pan XQ, Yu HQ. Heterogeneous Fenton water purification catalyzed by iron phosphide (FeP). WATER RESEARCH 2023; 241:120151. [PMID: 37269626 DOI: 10.1016/j.watres.2023.120151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Heterogeneous Fenton reaction has a great application potential in water purification, but efficient catalysts are still lacking. Iron phosphide (FeP) has a higher activity than the conventional Fe-based catalysts for Fenton reactions, but its ability as a Fenton catalyst to directly activate H2O2 remains unreported. Herein, we demonstrate that the fabricated FeP has a lower electron transfer resistance than the typical conventional Fe-based catalysts, i.e., Fe2O3, Fe3O4, and FeOOH, and thus could active H2O2 to produce hydroxyl radicals more efficiently. In the heterogeneous Fenton reactions for sodium benzoate degradation, the FeP catalyst presents a superior activity with a reaction rate constant more than 20 times those of the other catalysts (i.e., Fe2O3, Fe3O4, and FeOOH). Moreover, it also exhibits a great catalytic activity in the treatment of real water samples and has a good stability in the cycling tests. Furthermore, the FeP could be loaded onto a centimeter-sized porous carbon support and the prepared macro-sized catalyst exhibits an excellent water treatment performance and can be well recycled. This work reveals a great potential of FeP as a catalyst for heterogeneous Fenton reactions and may inspire further development and practical application of highly efficient catalysts for water purification.
Collapse
Affiliation(s)
- Shu-Chuan Mei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Liang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Gui-Xiang Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Qiang Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
16
|
Chen S, Zhu M, Guo X, Yang B, Zhuo R. Coupling of Fenton reaction and white rot fungi for the degradation of organic pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114697. [PMID: 36889210 DOI: 10.1016/j.ecoenv.2023.114697] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Advanced oxidation processes (AOPs) are a class of highly efficient pollution remediation technologies that produce oxidising radicals under specific conditions to degrade organic pollutants. The Fenton reaction is a commonly applied AOP. To combine the advantages of AOPs and biodegradation in the remediation of organic pollutants, some studies have developed coupled systems between Fenton AOPs and white rot fungi (WRF) for environmental organic pollutant remediation and have achieved some success. Moreover, a promising system, termed as advanced bio-oxidation processes (ABOPs), mediated by the quinone redox cycling of WRF, has attracted increasing attention in the field. In this ABOP system, the radicals and H2O2 produced through the quinone redox cycling of WRF can strengthen Fenton reaction. Meanwhile, in this process, the reduction of Fe3+ to Fe2+ ensures the maintenance of Fenton reaction, leading to a promising application potential for the remediation of environmental organic pollutants. ABOPs combine the advantages of bioremediation and advanced oxidation remediation. Further understanding the coupling of Fenton reaction and WRF in the degradation of organic pollutants will be of great significance for the remediation of organic pollutants. Therefore, in this study, we reviewed recent remediation techniques for organic pollutants involving the coupled application of WRF and the Fenton reaction, focusing on the application of new ABOPs mediated by WRF, and discussed the reaction mechanism and conditions of ABOPs. Finally, we discussed the application prospects and future research directions of the joint application of WRF and advanced oxidation technologies for the remediation of environmental organic pollutants.
Collapse
Affiliation(s)
- Shuxian Chen
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Mingdong Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Hunan Rice Research Institute, Changsha 410125, PR China
| | - Xiayu Guo
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, PR China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, PR China
| | - Bentao Yang
- Zhongye Changtian International Engineering Co., Ltd., Changsha 410205, PR China.
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
17
|
Hassan AF, Alshandoudi LM, Awad AM, Mustafa AA, Esmail G. Synthesis of nanomagnetite/copper oxide/potassium carrageenan nanocomposite for the adsorption and Photo-Fenton degradation of Safranin-O: kinetic and thermodynamic studies. Macromol Res 2023. [DOI: 10.1007/s13233-023-00147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
AbstractIn the current study, a novel nanomaterial called nanomagnetite/copper oxide/potassium carrageenan nanocomposite (MKCO) was fabricated to include Fenton (nanomagnetite, NM) and Fenton-like reagent (copper oxide nanoparticles, NCO) in a matrix of potassium carrageenan biopolymer. The prepared solid materials were characterized by different physicochemical techniques, such as TGA, N2 adsorption/desorption, SEM, TEM, XRD, DRS, pHPZC, and FTIR. The prepared MKCO showed unique properties like higher specific surface area of 652.50 m2/g, pore radius of 1.19 nm, pHPZC equals 7.80, and the presence of different surface chemical functional groups. Under various application conditions, comparative experiments between Safranin-O dye (SO) adsorption and Photo-Fenton catalytic degradation were conducted. After 24 h, MKCO had a maximum adsorption capacity of 384.61 mg/g at 42 °C, while the Photo-Fenton oxidation process took only 10 min to totally decompose 93% of SO at 21 °C. Based on the higher values of correlation coefficients, Langmuir’s adsorption model is the best-fitted adsorption model for SO onto all the prepared solid materials. Studies on SO adsorption’s kinetics and thermodynamics show that it is physisorption and that it operates according to endothermic, spontaneous, and PFO model processes. While, PFO, endothermic, and non-spontaneous processes are satisfied by the catalytic decomposition of SO. After five application cycles, MKCO demonstrated good catalyst reusability with a 3.4% decrease in degrading efficiency. For lower contaminant concentrations and shorter application times, Photo-Fenton catalytic degradation of organic pollutants is more effective than adsorption.
Graphical abstract
Fenton and Photo-Fenton degradation of Safranin-O
Collapse
|
18
|
Dai C, Sheng Z, Tian X, Nie Y. Chalcogen Elements in Regulating the Local Electron Density of Cu 2X for an Efficient Heterogeneous Fenton-like Process. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11324-11332. [PMID: 36790437 DOI: 10.1021/acsami.2c22065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this work, a novel strategy for Fenton activity improvement of Cu2X was reported, in which the local electron density of Cu sites was regulated via manipulation of simple chalcogen elements (O, S, and Se). Among them, Cu2Se catalysts show excellent catalytic activity to activate H2O2 for the complete removal of ofloxacin (10 mg/L) at an initial pH of 6.5 within 120 min. Radical scavenger experiments and electron spin resonance spectroscopy confirm that •OH radicals are the primary oxygen reactive species to drive ofloxacin degradation. In addition, density functional theory calculations further proved that electrons would migrate from X and accumulate on Cu active sites in the order Se > S > O. Compared with Cu2O and Cu2S, the highly concentrated electron density of Cu atoms in Cu2Se not only decreased the activation energy of the Fenton-like reaction but also boosted the Cu2+/Cu+ cycle with the generation of more •OH radicals (18-66 μm) and the maintenance of high stability of catalysts, leading to excellent catalytic activity and application potential. We believe this work will lay the foundation for designing excellent Fenton catalysts for practical applications since developing a heterogeneous Fenton system with the highest oxidation efficiency has always been the long-term goal in this field.
Collapse
Affiliation(s)
- Chu Dai
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Ziyang Sheng
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xike Tian
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yulun Nie
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
19
|
Chen W, He H, Liang J, Wei X, Li X, Wang J, Li L. A comprehensive review on metal based active sites and their interaction with O 3 during heterogeneous catalytic ozonation process: Types, regulation and authentication. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130302. [PMID: 36347142 DOI: 10.1016/j.jhazmat.2022.130302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Heterogeneous catalytic ozonation (HCO) was a promising water purification technology. Designing novel metal-based catalysts and exploring their structural-activity relationship continued to be a hot topic in HCO. Herein, we reviewed the recent development of metal-based catalysts (including monometallic and polymetallic catalysts) in HCO. Regulation of metal based active sites (surface hydroxyl groups, Lewis acid sites, metal redox cycle and surface defect) and their key roles in activating O3 were explored. Advantage and disadvantage of conventional characterization techniques on monitoring metal active sites were claimed. In situ electrochemical characterization and DFT simulation were recommended as supplement to reveal the metal active species. Though the ambiguous interfacial behaviors of O3 at these active sites, the existence of interfacial electron migration was beyond doubt. The reported metal-based catalysts mainly served as electron donator for O3, which resulted in the accumulation of oxidized metal and reduced their activity. Design of polymetallic catalysts could accelerate the interfacial electron migration, but they still faced with the dilemma of sluggish Me(n+m)+/Men+ redox cycle. Alternative strategies like coupling active metal species with mesoporous silicon materials, regulating surface hydrophobic/hydrophilic properties, polaring surface electron distribution, coupling HCO process with photocatalysis and H2O2 were proposed for future research.
Collapse
Affiliation(s)
- Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hengxi He
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Jiantao Liang
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Xipeng Wei
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xukai Li
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China.
| | - Jing Wang
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Laisheng Li
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China.
| |
Collapse
|
20
|
Wang S, Wang J. Bimetallic and nitrogen co-doped biochar for peroxymonosulfate (PMS) activation to degrade emerging contaminants. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
21
|
Yu H, Liu Y, Cong S, Xia S, Zou D. Review of Mo-based materials in heterogeneous catalytic oxidation for wastewater purification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
22
|
Xu A, Sun X, Fan S, Yang Z, Zhang Q, Zhang Y, Zhang Y. Bio-FeMnOx integrated carbonaceous gas-diffusion cathode for the efficient degradation of ofloxacin by heterogeneous electro-Fenton process. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Long Y, Huang S, Sun J, Peng D, Zhang Z. Markedly boosted peroxymonosulfate- and periodate-based Fenton-like activities of iron clusters on sulfur/nitrogen codoped carbon: Key roles of a sulfur dopant and compared activation mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158752. [PMID: 36108861 DOI: 10.1016/j.scitotenv.2022.158752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Highly dispersed iron nanoclusters on carbon (FeNC@C) hold great promise for wastewater purification in Fenton-like reactions. The microenvironment engineering of central Fe atom is promising to boost the activation capacity of FeNC@C, which is however remains a challenge. This study developed a self-sacrificed templating strategy to S, N-codoped carbon supported Fe nanoclusters (FeNC@SNC) activator and find the key role of sulfur heteroatoms in regulating the electron structure of Fe sites and final activation property. Investigations revealed that the FeNC@SNC composite exhibited unusual bifunctional activity in both peroxymonosulfate (PMS)- and periodate (PI)-based Fenton-like reactions. We also offered insights into the differences between the degradation of organics by the FeNC@SNC/PMS and FeNC@SNC/PI systems. Specifically, under identical conditions, the FeNC@SNC/PMS system delivered a higher oxidation capability and stronger resistance to nontarget matrix constituents, but showed more severe Fe leaching than the FeNC@SNC/PI system. Furthermore, while mediated electron-transfer process was identified as the major route for pollutant decomposition in both systems, the high-valent Fe-oxo species [Fe (IV)] was the auxiliary reactive species found only in the FeNC@SNC/PMS system. Based on these findings, our results provide profound insights into the design of active and durable Fe-based activators toward highly efficient Fenton-like reactions.
Collapse
Affiliation(s)
- Yangke Long
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Shixin Huang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jianlin Sun
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| | - Zuotai Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
24
|
Tang Y, Dou J, Lu Z, Xu J, He Y. Accelerating Fe 2+/Fe 3+ cycle via biochar to improve catalytic degradation efficiency of the Fe 3+/persulfate oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120669. [PMID: 36395909 DOI: 10.1016/j.envpol.2022.120669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The sluggish Fe3+/Fe2+ cycle was the rate-limiting step in the Fenton-like reaction, and metal-free carbonaceous materials are considered as emerging alternatives to solve this problem. However, the effect of carbon material properties on the distribution of reactive species remains poorly understood. This study investigated the possibility and mechanism of using biochar to accelerate the Fe3+/Fe2+ cycle to overcome the low efficiency of Fe3+/persulfate (PS) catalytic oxidation of phenanthrene. More importantly, the contribution of reactive species in the reaction systems with the variation of biochar pyrolysis temperatures was quantitatively studied. The results showed that medium-temperature derived biochar (BC500) had the greatest ability to enhance the Fenton-like system compared to the low- and high-temperature (BC350/700), and the first-order rate constant achieved 5.2 and 35.7-fold increase against the biochar/PS and Fe3+/PS systems, respectively. Using electrochemical evidence, sulfoxide probe tests, and steady-state concentration calculations, radicals yields were found to rise and then reduce with decreasing pyrolysis temperature, while the nonradical contribution of Fe(IV) increased to 56.3%. Electron paramagnetic resonance, Boehm titration, and Raman spectroscopy unraveled that the enhanced effect of biochar resulted from itself persistent free radicals, phenolic-OH, and edge defects, which enabled electron transfer between Fe3+ and biochar. Fe2+ was thus continuously generated and effectively activated the PS. This work enables a better understanding of the Fe3+-mediated Fenton-like reaction in the presence of biochar and provides a sustainable green strategy for Fenton chemistry with potential applications.
Collapse
Affiliation(s)
- Yao Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jibo Dou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI, 48201, United States
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Shi Y, Hong S, Li R, Luo B, Zhu H, Huang Y. Insight on the heterogeneously activated H 2O 2 with goethite under visible light for cefradine degradation: pH dependence and photoassisted effect. CHEMOSPHERE 2023; 310:136799. [PMID: 36228728 DOI: 10.1016/j.chemosphere.2022.136799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The iron mineral-catalyzed degradation of cephalosporin antibiotics with H2O2 occurs ubiquitously in nature. Despite numerous studies, the effects of environmental conditions on reactive species production and degradation processes of cephalosporins remain unclear. Here, we report the iron mineral of goethite as the efficient and heterogenous catalyst for the degradation of cefradine (CRD) via H2O2 activation under different conditions involving pH and visible light irradiation. Results show that the CRD removal rate is highly dependent on pH and visible light irradiation. Interestingly, when the pH ranges from 4.0 to 7.0, the degradation intermediates of CRD under dark are the same as under visible light conditions in the goethite/H2O2 system. And, the ratio of CRD degradation rate constant (kLight/kDark) reaches a maximum at pH 5.0, suggesting that CRD existing as zwitterion species is preferable for its removal with photoassistance. The mechanism investigation reveals that both •OH and ≡[FeIVO]2+ oxidants are generated during the reaction process, and •OH is the major oxidant at acidic pH, while ≡[FeIVO]2+ is more likely to be formed with photoassistance at near-neutral pH. According to UPLC-MS/MS analysis, CRD degradation likely happens via hydrogen atom abstraction from cyclohexadienyl by •OH, thioether and olefin oxidation by ≡[FeIVO]2+, and FeIII-catalyzed hydrolytic cleavage of β-lactam ring. These findings highlight the vital roles of pH and photoassistance in the heterogeneously activated H2O2 with goethite for CRD degradation.
Collapse
Affiliation(s)
- Yan Shi
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Shaoming Hong
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Ruiping Li
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China.
| | - Biying Luo
- Angel Yeast Co., Ltd., Yichang, 443003, China
| | - Huaiyong Zhu
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
26
|
Yang Q, Liu Y, Ke J, Li C, Ge Y, Chen J, Guo R. Enhanced degradation of sulfamethazine in boron-doped diamond anode system via utilization of by-product oxygen and pyrite: Mechanism and pharmaceutical activity removal assessment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
27
|
Zhao F, Xiao J, Geng S, Wang Y, Tsiakaras P, Song S. Novel Fe7S8/C nanocomposites with accelerating iron cycle for enhanced heterogeneous electro-Fenton degradation of dyes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Loose composite nanofiltration membrane with in-situ immobilized β-FeOOH film for effective dyes degradation and separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Li Y, Wang J, Xiang Z, Yang J, Yin J, Guo X, Wang W. Mn doping accelerates regeneration of Fe2+ in FeOOH and promotes efficient H2O2 activation for degradation of As(III). Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Zhou H, Yang J, Xu J, Han B, Zhu X, Jiang C, Wang Y. Synergistic effect of visible-light-driven FeOOH@Bi2MoO6 for removal of ciprofloxacin over a wide pH range: Efficient separation of photogenerated carriers and fast Fe(III)/Fe(II) cycling. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
31
|
Dual-active-site Fe/Cu single-atom nanozymes with multifunctional specific peroxidase-like properties for S2− detection and dye degradation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Liu H, Fu P, Liu F, Hou Q, Tong Z, Bi W. Degradation of ciprofloxacin by persulfate activated with pyrite: mechanism, acidification and tailwater reuse. RSC Adv 2022; 12:29991-30000. [PMID: 36321107 PMCID: PMC9582745 DOI: 10.1039/d2ra05412d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Residues of ciprofloxacin (CIP) in the environment pose a threat to human health and ecosystems. This study investigated the degradation of CIP by persulfate (PS) activated with pyrite (FeS2). Results showed that when [CIP] = 30 μM, [FeS2] = 2.0 g L-1, and [PS] = 1 mM, the CIP removal rate could reach 94.4% after 60 min, and CIP mineralization rate reached 34.9%. The main free radicals that degrade CIP were SO4˙- and HO˙, with contributions of 34.4% and 35.7%, respectively. Additionally, compared to the control (ultrapure water), CIP in both tap water and river water was not degraded. However, acidification could eliminate the inhibition of CIP degradation in tap water and river water. Furthermore, acidic tailwater from CIP degradation could be utilized to adjust the pH of untreated CIP, which could greatly promote the degradation of CIP and further reduce disposal costs. The reaction solution was not significantly biotoxic and three degradation pathways of CIP were investigated. Based on the above results and the characterization of FeS2, the mechanism of CIP degradation in the FeS2/PS system was that FeS2 activated PS to generate Fe(iii) and SO4˙-. The sulfide in FeS2 reduced Fe(iii) to Fe(ii), thus achieving an Fe(iii)/Fe(ii) cycle for CIP degradation.
Collapse
Affiliation(s)
- Hui Liu
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Peng Fu
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Fenwu Liu
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Qingjie Hou
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Zhenye Tong
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| | - Wenlong Bi
- College of Resources and Environment, Shanxi Agricultural University Shanxi 030801 China
| |
Collapse
|
33
|
Ribeiro JP, Sarinho L, Neves MC, Nunes MI. Valorisation of residual iron dust as Fenton catalyst for pulp and paper wastewater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119850. [PMID: 35944783 DOI: 10.1016/j.envpol.2022.119850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
In this work, the performance of residual iron dust (RID) from metallurgic industry was assessed as Fenton catalyst for the treatment of real pulp bleaching wastewater. The focus was on the removal of recalcitrant pollutants AOX (adsorbable organic halides), by a novel, cleaner, and cost-effective circular solution based on a waste-derived catalyst. The behaviour of RID as iron source was firstly assessed by performing leaching tests at different RID:wastewater w/v ratios and contact time. Afterwards, RID-catalysed homogeneous and heterogeneous Fenton processes were conducted to maximise AOX removal from the pulp bleaching wastewater. Reusability of RID was assessed by a simple collect-and-reuse methodology, without any modification. Similar AOX removal under less consumption of chemicals was achieved with the novel heterogeneous Fenton process. Reaction in the bulk solution was the main pathway of AOX removal, given that the low surface area and porosity of the material did not allow for a high contribution of surface reaction to the overall performance. Moreover, AOX removal was similar over two consecutive treatment cycles, with Fenton process being responsible for 56.7-62.1% removal of AOX from the wastewater, and the leaching step adding 11.4-13.2%. At the end of treatment, COD either decreased (1st cycle) or remained unchanged (2nd and 3rd cycle). The operating cost of the optimised heterogeneous Fenton was 3-11% lower than under conventional Fenton process. This work presented a novel, circular solution based on a low-cost waste-derived catalyst, advancing the knowledge needed to foster industrial application of such technologies to increase industrial environmental performance and efficiency.
Collapse
Affiliation(s)
- João Peres Ribeiro
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Luana Sarinho
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Márcia C Neves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maria Isabel Nunes
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
34
|
Nippes RP, Macruz PD, Gomes AD, Girotto CP, Scaliante MHNO, de Souza M. Removal of reactive blue 250 dye from aqueous medium using Cu/Fe catalyst supported on Nb2O5 through oxidation with H2O2. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Yin Y, Liu M, Shi L, Zhang S, Hirani RAK, Zhu C, Chen C, Yuan A, Duan X, Wang S, Sun H. Highly dispersive Ru confined in porous ultrathin g-C 3N 4 nanosheets as an efficient peroxymonosulfate activator for removal of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128939. [PMID: 35483264 DOI: 10.1016/j.jhazmat.2022.128939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Ru species were loaded on a two-dimensional (2D) material of graphitic carbon nitride (2D g-C3N4) to serve as the efficient AOP catalysts. The catalytic activity was closely related to the dispersion degree of Ru, as determined by the inherent nanoarchitecture of the supporting material. Ultrathin g-C3N4 nanosheets with a unique porous structure were fabricated by further thermally oxidizing and etching bulk g-C3N4 (bCN) in air. Homogeneous dispersion of Ru species was successfully achieved on the porous few-layered g-C3N4 nanosheets (pCN) by stirring, washing, freeze drying and annealing processes to obtain Ru-pCN catalysts, whereas bCN or multilayered g-C3N4 (mCN) led to the aggregation of Ru nanoparticles in Ru-bCN and Ru-mCN materials. The conventional impregnation method also caused the resulting Ru-pCN-imp catalyst with undesirable Ru aggregation in spite of employing pCN. The optimal 4.4Ru-pCN removed 100% of 2,4,6-trichlorophenol (TCP) within only 3 min, superior to its counterpart samples, and exhibited remarkable degradation efficiencies for methyl orange, neutral red, 4-chlorophenol, tetracycline and oxytetracycline. Mechanistic studies suggested that four radicals, e.g., •OH, SO4• -, O2• - and 1O2 were generated during the peroxymonosulfate (PMS) activation, in which SO4• - and 1O2 played a major role.
Collapse
Affiliation(s)
- Yu Yin
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Mengxuan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lei Shi
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | | | - Chengzhang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Chuanxiang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hongqi Sun
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia.
| |
Collapse
|
36
|
Jia X, Cao P, Qin X, Chen S, Yu H, Quan X. High-efficiency electrochemical activation of H2O2 into ·OH enabled by flow-through FeOCl-modified carbon electrode for organic pollutants degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Luo J, Du X, Ye Q, Fu D. Review: Graphite Phase Carbon Nitride Photo-Fenton Catalyst and its Photocatalytic Degradation Performance for Organic Wastewater. CATALYSIS SURVEYS FROM ASIA 2022. [DOI: 10.1007/s10563-022-09363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Hosohata K, Harnsirikarn T, Chokesuwattanaskul S. Ferroptosis: A Potential Therapeutic Target in Acute Kidney Injury. Int J Mol Sci 2022; 23:ijms23126583. [PMID: 35743026 PMCID: PMC9223765 DOI: 10.3390/ijms23126583] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a recently recognized form of nonapoptotic cell death that is triggered by reactive oxidative species (ROS) due to iron overload, lipid peroxidation accumulation, or the inhibition of phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4). Recent studies have reported that ferroptosis plays a vital role in the pathophysiological process of multiple systems such as the nervous, renal, and pulmonary systems. In particular, the kidney has higher rates of O2 consumption in its mitochondria than other organs; therefore, it is susceptible to imbalances between ROS and antioxidants. In ischemia/reperfusion (I/R) injury, which is damage caused by the restoring blood flow to ischemic tissues, the release of ROS and reactive nitrogen species is accelerated and contributes to subsequent inflammation and cell death, such as ferroptosis, as well as apoptosis and necrosis being induced. At the same time, I/R injury is one of the major causes of acute kidney injury (AKI), causing significant morbidity and mortality. This review highlights the current knowledge on the involvement of ferroptosis in AKI via oxidative stress.
Collapse
Affiliation(s)
- Keiko Hosohata
- Education and Research Center for Clinical Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
- Correspondence: ; Tel.: +81-72-690-1271
| | - Tanisorn Harnsirikarn
- Division of Nephrology, Department of Internal Medicine, Bhumibol Adulyadej Hospital, Royal Thai Air Force, Bangkok 10220, Thailand;
| | | |
Collapse
|
39
|
Zhou M, Ji C, Ji F, Chen M, Zhong Z, Xing W. Micro-Octahedron Cu 2O-Based Photocatalysis-Fenton for Organic Pollutant Degradation: Proposed Coupling Mechanism in a Membrane Reactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Specialized Separation Membranes, Nanjing Tech University, Nanjing 210009, China
| | - Cuiyue Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Specialized Separation Membranes, Nanjing Tech University, Nanjing 210009, China
| | - Fangfang Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Specialized Separation Membranes, Nanjing Tech University, Nanjing 210009, China
| | - Min Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Specialized Separation Membranes, Nanjing Tech University, Nanjing 210009, China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Specialized Separation Membranes, Nanjing Tech University, Nanjing 210009, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Specialized Separation Membranes, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
40
|
Li T, Zhu P, Wang D, Zhang Z, Zhou L. Efficient utilization of the electron energy of antibiotics to accelerate Fe(III)/Fe(II) cycle in heterogeneous Fenton reaction induced by bamboo biochar/schwertmannite. ENVIRONMENTAL RESEARCH 2022; 209:112830. [PMID: 35093307 DOI: 10.1016/j.envres.2022.112830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The discharge of antibiotics evokes environmental health crisis, and is also a waste of organic energy. Currently, heterogeneous Fenton for antibiotics removal has attracted growing attentions due to wide pH range and no iron sludge production, however, it often suffers from a low formation rate of Fe(II), resulting in difficult application of heterogeneous Fenton technology in sewage treatment. To overcome this drawback, bamboo biochar (BB) is coupled with schwertmannite (Sch) through Acidithiobacillus ferrooxidans-mediated Fe(II) oxidation reaction to obtain a heterogeneous catalyst (Sch/BB) with high adsorption performance and Fenton activity. According to the analysis of experimental results, electrons around C (from BB) can easily transfer to Fe by Fe-O-C bonds to expedite ≡Fe(III)/≡Fe(II) cycle, while electrons of antibiotics adsorbed on Sch/BB surface are effectively utilized to maintain the efficient regeneration of ≡Fe(II) through BB electron shuttle or Fe-O-C bonds between Sch/BB and pollutants, further causing a superior Fenton activity (98% antibiotics removal) of Sch/BB. Moreover, due to its excellent adsorption performance, Sch/BB as filter materials can effectively remove dye pollutants in flow wastewater. These findings provided a high-activity and practical heterogeneous Fenton catalyst for pollutants degradation, while a new perspective for efficient utilization of the electrons of organic pollutants was given.
Collapse
Affiliation(s)
- Ting Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Peng Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Dianzhan Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Zexin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
41
|
Emerging Pollutants in Wastewater, Advanced Oxidation Processes as an Alternative Treatment and Perspectives. Processes (Basel) 2022. [DOI: 10.3390/pr10051041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Emerging pollutants are present in wastewaters treated by conventional processes. Due to water cycle interactions, these contaminants have been reported in groundwater, surface water, and drinking waters. Since conventional processes cannot guarantee their removal or biotransformation, it is necessary to study processes that comply with complete elimination. The current literature review was conducted to describe and provide an overview of the available information about the most significant groups of emerging pollutants that could potentially be found in the wastewater and the environment. In addition, it describes the main entry and distribution pathways of emerging contaminants into the environment through the water and wastewater cycle, as well as some of the potential effects they may cause to flora, fauna, and humans. Relevant information on the SARS-CoV-2 virus and its potential spread through wastewater is included. Furthermore, it also outlines some of the Advanced Oxidation Processes (AOPs) used for the total or partial emerging pollutants removal, emphasizing the reaction mechanisms and process parameters that need to be considered. As well, some biological processes that, although slow, are effective for the biotransformation of some emerging contaminants and can be used in combination with advanced oxidation processes.
Collapse
|
42
|
Pan S, Zhai Z, Yang K, Xiang Y, Tang S, Zhang Y, Jiao T, Zhang Q, Yuan D. β-Lactoglobulin amyloid fibrils supported Fe(III) to activate peroxydisulfate for organic pollutants elimination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Zhao Q, Ren Y, Huang L, Chen Y, Bian Z. In situ Fe(III)-doped TiO2 mesocrystals catalyzed visible light photo-Fenton system. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
44
|
Huang X, Xiao J, Yi Q, Li D, Liu C, Liu Y. Construction of core-shell Fe 3O 4@GO-CoPc photo-Fenton catalyst for superior removal of tetracycline: The role of GO in promotion of H 2O 2 to •OH conversion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114613. [PMID: 35124310 DOI: 10.1016/j.jenvman.2022.114613] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
A novel core-shell structured Fe3O4@GO-CoPc magnetic catalyst, which is with magnetite (Fe3O4) as the core, graphene oxide (GO) as the interlayer and cobalt-phthalocyanine (CoPc) as the shell, was successfully prepared and used as a heterogeneous photo-Fenton catalyst for tetracycline (TC) degradation in this work. The core-shell structure of the catalyst was confirmed by XRD, FTIR, SEM and TEM. BET and magnetic hysteresis loops measurements indicated that Fe3O4@GO-CoPc catalyst owned large specific surface area and could be easily recovered under an external magnetic field. Meanwhile, the experimental results of TC degradation demonstrated that the photo-Fenton efficiency of Fe3O4@GO-CoPc was excellent. When the reaction time was 120 min, TC could be degraded almost completely in the photo-Fenton system with Fe3O4@GO-CoPc. The high photo-Fenton catalytic activity of Fe3O4@GO-CoPc could be resulted from the effective transfer of photo-generated electrons between CoPc and Fe3O4 by GO. Moreover, the main reaction species, •OH, O2•-, 1O2 and h+, were verified by the analysis of active species in this system. Finally, the mechanism analyses and quantitative analysis results of active species indicated that the introduction of GO accelerated the cycle between Fe(II) and Fe(III) as well as improved the effective utilization of H2O2 (the efficiency of conversion of H2O2 to •OH).
Collapse
Affiliation(s)
- Xiaohan Huang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Jianfei Xiao
- Hunan Non-ferrous Metals Holding Group Co., Ltd, Changsha, 410000, China
| | - Qing Yi
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Dejian Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Chenrui Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
45
|
Wang C, Jiang R, Yang J, Wang P. Enhanced Heterogeneous Fenton Degradation of Organic Pollutants by CRC/Fe3O4 Catalyst at Neutral pH. Front Chem 2022; 10:892424. [PMID: 35494657 PMCID: PMC9049183 DOI: 10.3389/fchem.2022.892424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Fe3O4-based heterogeneous Fenton catalysts have been widely employed for degrading organic pollutants, however it is challenging to use them in highly efficient and recyclable application in wastewater treatment. In this work, carboxylate-rich carbon (CRC)-modified Fe3O4 magnetic particles are prepared by the sol-gel self-combustion method, where CRC is obtained from the carbonization of sodium gluconate. The CRC/Fe3O4 catalyst exhibits high heterogeneous Fenton degradation performance. The complete 10 mg L−1 methylene blue (MB) removal is achieved in 180 min under conditions of 10 mM H2O2 and 1.00 g of L−1 CRC/Fe3O4 at neutral pH. After five cycles, the structure and morphology of CRC/Fe3O4 composites remained unchanged and the catalytic activity also remained unaltered. Moreover, phenol, benzoic acid (BA), sulfamethazine (SMT), and tetracycline (TC) were also degraded in the heterogeneous Fenton reaction using CRC/Fe3O4 as a catalyst. The strong coordinating ability of –COOH/ –COO– functionalities of CRC formed strong bonds with Fe(II/III) ions on the surfaces of Fe3O4 particles, which was conducive to adsorption of organic matter on the surface of the catalyst and promoted the occurrence of heterogeneous Fenton reactions. It was found that CRC/Fe3O4 had higher removal rates for the adsorptive exclusions of pollutants, such as TC and MB, whereas there were lower removal rates for phenol, BA, and SMT. This work brings potential insights for development of a novel adsorption-enhanced heterogeneous Fenton reaction for wastewater treatment.
Collapse
Affiliation(s)
- Chuan Wang
- A Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Rui Jiang
- A Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay, Ministry of Education, Guangzhou University, Guangzhou, China
- Economic Development Bureau of Yongzhou Economic and Technological Development Zone, Yongzhou, China
| | - Jingxin Yang
- A Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay, Ministry of Education, Guangzhou University, Guangzhou, China
- *Correspondence: Jingxin Yang, ; Pingshan Wang,
| | - Pingshan Wang
- A Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay, Ministry of Education, Guangzhou University, Guangzhou, China
- *Correspondence: Jingxin Yang, ; Pingshan Wang,
| |
Collapse
|
46
|
Ren Y, Zhang J, Ji C, Wang S, Lv L, Zhang W. Iron-based metal-organic framework derived pyrolytic materials for effective Fenton-like catalysis: Performance, mechanisms and practicability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152201. [PMID: 34890672 DOI: 10.1016/j.scitotenv.2021.152201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
In this study, a new catalyst was fabricated by pyrolysis under nitrogen atmosphere with MIL-53(Fe) as the precursor, and was applied to catalyze Fenton-like process. Effects of calcination temperature and pH on decontamination performance, and stability of materials were investigated. Under optimal conditions (calcination temperature of 500 °C and pH of 5.0), the new Fenton-like system remained low iron leaching, and achieved high pseudo-first-order rate constant of 0.0251 min-1 for bisphenol S (BPS) removal, which is much higher than those in MIL-53(Fe), and nano-Fe3O4 catalyzed Fenton-like systems. The superiority of the new catalyst for Fenton-like catalysis was attributed to high specific surface area, as well as formed Fe(II), coordinatively unsaturated iron center and the Fe-O/Fe-C compounds based on the analyses of characterizations. Furthermore, main active species for BPS degradation was identified as hydroxyl radicals, and total hydroxyl radical generation was determined by trapping experiments. The degradation pathways of BPS were also proposed by intermediates monitoring. Moreover, this catalyst showed good potential for practical application, according to the evaluation of reuse, different pollutants degradation, and BPS removal in real wastewater. We believe this study developed a new catalyst with high catalytic activity, high stability and wide application scope, and also sheds light on further development of metal-organic frameworks for Fenton-like catalysis.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chenghan Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|
47
|
Jerez S, Ventura M, Molina R, Martínez F, Pariente MI, Melero JA. Application of a Fenton process for the pretreatment of an iron-containing oily sludge: A sustainable management for refinery wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114244. [PMID: 34891053 DOI: 10.1016/j.jenvman.2021.114244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
The feasibility of a Fenton-type process for the pretreatment of an oily refinery sludge has been explored taking advantage of the iron contained in the own sludge. This process reduces the content of total petroleum hydrocarbons (TPHs) accompanied by an increase in the total organic carbon concentration in the liquid phase. The effect of the temperature and the hydrogen peroxide loading was thoroughly studied in this work being the oxidant concentration the most critical parameter. Under 60 °C and 90 g/L of initial hydrogen peroxide concentration, the Total Organic Carbon (TOC) of the liquid phase was increased up values of 1336 mg/L and with a remarkable contribution of acetic acid as final oxidized compound (396 mgC/L). Additionally, nitrogen and phosphorous compounds were also dissolved in the aqueous phase achieving values of 250 mg/L and 7 mg/L for total Kjeldahl nitrogen and total phosphorous, respectively. Respirometry assays of the aqueous phase after the Fenton pretreatment have evidenced an increase of biodegradability up to 49% which makes this phase suitable for further biological processing in the refinery scheme. The reduction of the content of TPHs (61%) of the oily sludge, has also improved the settleability of the treated effluent (reducing the capillary suction time (CST) in ca. 88%).
Collapse
Affiliation(s)
- S Jerez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Mostoles, 28933, Madrid, Spain
| | - M Ventura
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Mostoles, 28933, Madrid, Spain
| | - R Molina
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Mostoles, 28933, Madrid, Spain
| | - F Martínez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Mostoles, 28933, Madrid, Spain
| | - M I Pariente
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Mostoles, 28933, Madrid, Spain.
| | - J A Melero
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Mostoles, 28933, Madrid, Spain
| |
Collapse
|
48
|
Liu J, Peng C, Shi X. Preparation, characterization, and applications of Fe-based catalysts in advanced oxidation processes for organics removal: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118565. [PMID: 34822943 DOI: 10.1016/j.envpol.2021.118565] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Fe-based catalysts as low-cost, high-efficiency, and non-toxic materials display superior catalytic performances in activating hydrogen peroxide, persulfate (PS), peracetic acid (PAA), percarbonate (PC), and ozone to degrade organic contaminants in aqueous solutions. They mainly include ferrous salts, zero-valent iron, iron-metal composites, iron sulfides, iron oxyhydroxides, iron oxides, and supported iron-based catalysts, which have been widely applied in advanced oxidation processes (AOPs). However, there is lack of a comprehensive review systematically reporting their synthesis, characterization, and applications. It is imperative to evaluate the catalytic performances of various Fe-based catalysts in diverse AOPs systems and reveal the activation mechanisms of different oxidants by Fe-based catalysts. This work detailedly summarizes the synthesis methods and characterization technologies of Fe-based catalysts. This paper critically evaluates the catalytic performances of Fe-based catalysts in diverse AOPs systems. The effects of solution pH, reaction temperature, coexisting ions, oxidant concentration, catalyst dosage, and external energy on the degradation of organic contaminants in the Fe-based catalyst/oxidant systems and the stability of Fe-based catalysts are also discussed. The activation mechanisms of various oxidants and the degradation pathways of organic contaminants in the Fe-based catalyst/oxidant systems are revealed by a series of novel detection methods and characterization technologies. Future research prospects on the potential preparation means of Fe-based catalysts, practical applications, assistive technologies, and impact in AOPs are proposed.
Collapse
Affiliation(s)
- Jiwei Liu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Changsheng Peng
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China
| | - Xiangli Shi
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
49
|
Gu L, Wang S, Hui X, Li F, Lin H, Wu K. Degradation performance and mechanism toward methyl orange via nanoporous copper powders fabricated by dealloying of ZrCuNiAl metallic glassy precursors. NANOTECHNOLOGY 2022; 33:135713. [PMID: 34808604 DOI: 10.1088/1361-6528/ac3bec] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
The catalyst of nanoporous Cu (NP-Cu) powders, with the chemical composition of Cu79.63Ni6.85O13.53(at%), was successfully fabricated by dealloying of Zr-Cu-Ni-Al metallic glassy precursors. The as-prepared NP-Cu powders, co-existing with Cu2O phase on Cu ligament surface, had a three-dimensional network porous structure. The NP-Cu powders/H2O2system showed superior catalytic degradation efficiency toward azo dyes in both acidic (pH 2) and neutral (pH 7) environments. Moreover, the cyclic tests indicated that this powder catalyst also exhibited good durability. A novel degradation mechanism of NP-Cu powders/H2O2was proposed: the high degradation performance in acidic environment was mainly derived from heterogeneous reaction involved with a specific pathway related to Cu3+to produce HO·, while in neutral environment it was primarily resulted from homogeneous reaction with the generation of HO· from the classical Cu-based Fenton-like process. This work indicates that the NP-Cu powders have great potential applications as catalysts for wastewater treatments.
Collapse
Affiliation(s)
- Lingyu Gu
- The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Shushen Wang
- The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Xidong Hui
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Fudong Li
- The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Hengfu Lin
- The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Kaiming Wu
- The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, College of Science, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| |
Collapse
|
50
|
Jin L, Liu F, Wu JH, Ma SJ, Li JH, Tian YJ, Liu X, Lin ZX. The construction of a palladium–hydrogen accelerated catalytic Fenton system enhanced by UiO-66(Zr). NEW J CHEM 2022. [DOI: 10.1039/d1nj04550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of H2 and Pd/UiO-66(Zr) accelerated the FeII/FeIII cycle and led to higher contaminant degradation using only a trace level of FeII in several reaction cycles.
Collapse
Affiliation(s)
- Long Jin
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Feng Liu
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Jian-hua Wu
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - San-Jian Ma
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
- Suzhou Cott Environmental Protection Co., Ltd, Suzhou, Jiangsu Province 215156, China
| | - Juan-Hong Li
- Changzhou Vocational Institute of Engineering, Changzhou, Jiangsu Province 213164, China
| | - Yong-Jing Tian
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Xin Liu
- Institute of Solid Waste Pollution Control and Resource Reuse, Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Zi-Xia Lin
- Testing Center, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| |
Collapse
|