1
|
Gao P, Song S, Wang M, Yao M, Xue J. Oxygen atmosphere enhances ball milling remediation of petroleum-contaminated soil and reuse as adsorptive/catalytic materials for wastewater treatment. J Environ Sci (China) 2025; 147:652-664. [PMID: 39003080 DOI: 10.1016/j.jes.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 07/15/2024]
Abstract
Ball milling is an environmentally friendly technology for the remediation of petroleum-contaminated soil (PCS), but the cleanup of organic pollutants requires a long time, and the post-remediation soil needs an economically viable disposal/reuse strategy due to its vast volume. The present paper develops a ball milling process under oxygen atmosphere to enhance PCS remediation and reuse the obtained carbonized soil (BCS-O) as wastewater treatment materials. The total petroleum hydrocarbon removal rates by ball milling under vacuum, air, and oxygen atmospheres are 39.83%, 55.21%, and 93.84%, respectively. The Langmuir and pseudo second-order models satisfactorily describe the adsorption capacity and behavior of BCS-O for transition metals. The Cu2+, Ni2+, and Mn2+ adsorbed onto BCS-O were mainly bound to metal carbonates and metal oxides. Furthermore, BCS-O can effectively activate persulfate (PDS) oxidation to degrade aniline, while BCS-O loaded with transition metal (BCS-O-Me) shows better activation efficiency and reusability. BCS-O and BCS-O-Me activated PDS oxidation systems are dominated by 1O2 oxidation and electron transfer. The main active sites are oxygen-containing functional groups, vacancy defects, and graphitized carbon. The oxygen-containing functional groups and vacancy defects primarily activate PDS to generate 1O2 and attack aniline. Graphitized carbon promotes aniline degradation by accelerating electron transfer. The paper develops an innovative strategy to simultaneously realize efficient remediation of PCS and sequential reuse of the post-remediation soil.
Collapse
Affiliation(s)
- Pingting Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Simin Song
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Mingxin Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; Jiangsu Petrochemical Safety and Environmental Protection Engineering Research Center, Changzhou 213164, China.
| | - Meng Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jinjuan Xue
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Xia M, Xu K, Zhang S, Zhang C, Wang X, Li J. Insights into the low-temperature rapid catalytic pyrolysis and remediation mechanism of weathered petroleum-contaminated saline-alkali soil using Beta zeolite. ENVIRONMENTAL RESEARCH 2024; 263:120266. [PMID: 39481792 DOI: 10.1016/j.envres.2024.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Pyrolysis technique is considered to have great potential in the remediation of petroleum-contaminated soil, but it still has difficulties such as high energy consumption for the degradation of complex petroleum hydrocarbons and the deterioration of soil quality after treatment. In this study, the low-temperature rapid catalytic pyrolysis was realized using Beta zeolite to assist in remediating weathered petroleum-contaminated saline-alkali soil. Under the action of Beta zeolite, the removal efficiency of petroleum hydrocarbons reached 81% after pyrolysis treatment for 10 min at 250 °C, which was reduced to regulatory standard. The pyrolysis behavior and mechanism revealed that the addition of Beta zeolite effectively reduced the activation energy of C-C and C-O bonds cleavage in petroleum hydrocarbon macromolecules due to the strong acidity of Beta, meanwhile the quality of recovered oil from pyrolysis was improved. Additionally, the analyses of soil physicochemical property indicated that the harmless graphitic C generated from the degradation of petroleum hydrocarbons increased the organic matter in the soil, and the addition of Beta zeolite enhanced soil water retention capacity and reduced the soil alkalinity, thus improving the ecological function of saline-alkali soil. This study provides a new strategy for the removal of organic pollutants under special soil media conditions.
Collapse
Affiliation(s)
- Meng Xia
- Key Laboratory of Oasis Ecology of Ministry of Education, College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China.
| | - Kaihao Xu
- Key Laboratory of Oasis Ecology of Ministry of Education, College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
| | - Shuai Zhang
- Key Laboratory of Oasis Ecology of Ministry of Education, College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
| | - Chengxue Zhang
- Key Laboratory of Oasis Ecology of Ministry of Education, College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
| | - Xiaocong Wang
- Key Laboratory of Oasis Ecology of Ministry of Education, College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
| | - Jiqun Li
- Key Laboratory of Oasis Ecology of Ministry of Education, College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
3
|
Liu Q, Chen H, Su Y, Sun S, Zhao C, Zhang X, Gu Y, Li L. Enhanced crude oil degradation by remodeling of crude oil-contaminated soil microbial community structure using sodium alginate/graphene oxide/Bacillus C5 immobilized pellets. ENVIRONMENTAL RESEARCH 2023; 223:115465. [PMID: 36773642 DOI: 10.1016/j.envres.2023.115465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Bioaugmentation (BA) of oil-contaminated soil by immobilized microorganisms is considered to be a promising technology. However, available high-efficiency microbial agents remain very limited. Therefore, we prepared a SA/GO/C5 immobilized gel pellets by embedding the highly efficient crude oil degrading bacteria Bacillus C5 in the SA/GO composite material. The optimum preparation conditions of SA/GO/C5 immobilized gel pellets were: SA 3.0%, GO 25.0 μg/mL, embedding amount of C5 6%, water bath temperature of 50°C, CaCl2 solution concentration 3% and cross-linking time 20 h. BA experiments were carried out on crude oil contaminated soil to explore the removal effect of SA/GO/C5 immobilized pellets. The results showed that the SA/GO/C5 pellets exhibited excellent mechanical strength and specific surface area, which facilitated the attachment and growth of the Bacillus C5. Compared with free bacteria C5, the addition of SA/GO/C5 significantly promoted the removal of crude oil in soil, reaching 64.92% after 30 d, which was 2.1 times the removal rate of C5. The addition of SA/GO/C5 promoted the abundance of soil exogenous Bacillus C5 and indigenous crude oil degrading bacteria Alcanivorax and Marinobacter. In addition, the enrichment of hydrocarbon degradation-related functional abundance was predicted by PICRUSt2 in the SA/GO/C5 treatment group. This study demonstrated that SA/GO/C5 is an effective method for remediating crude oil-contaminated soil, providing a basis and option for immobilized microorganisms bioaugmentation to remediate organic contaminated soil.
Collapse
Affiliation(s)
- Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China.
| | - Hongxu Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Xiuxia Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Yingying Gu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Lin Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| |
Collapse
|
4
|
Sun S, Wang Y, Xu C, Qiao C, Chen S, Zhao C, Liu Q, Zhang X. Reconstruction of microbiome and functionality accelerated crude oil biodegradation of 2,4-DCP-oil-contaminated soil systems using composite microbial agent B-Cl. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130808. [PMID: 36669400 DOI: 10.1016/j.jhazmat.2023.130808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Biodegradation is one of the safest and most economical methods for the elimination of toxic chlorophenols and crude oil from the environment. In this study, aerobic degradation of the aforementioned compounds by composite microbial agent B-Cl, which consisted of Bacillus B1 and B2 in a 3:2 ratio, was analyzed. The biodegradation mechanism of B-Cl was assessed based on whole genome sequencing, Fourier transform infrared spectroscopy and gas chromatographic analyses. B-Cl was most effective at reducing Cl- concentrations (65.17%) and crude oil biodegradation (59.18%) at 7 d, which was when the content of alkanes ≤ C30 showed the greatest decrease. Furthermore, adding B-Cl solution to soil significantly decreased the 2,4-DCP and oil content to below the detection limit and by 80.68%, respectively, and reconstructed of the soil microbial into a system containing more CPs-degrading (exaA, frmA, L-2-HAD, dehH, ALDH, catABE), aromatic compounds-degrading (pcaGH, catAE, benA-xylX, paaHF) and alkane- and fatty acid-degrading (alkB, atoB, fadANJ) microorganisms. Moreover, the presence of 2,4-DCP was the main hinder of the observed effects. This study demonstrates the importance of adding B-Cl solution to determine the interplay of CPs with microbes and accelerating oil degradation, which can be used for in-situ bioremediation of CPs and oil-contaminated soil.
Collapse
Affiliation(s)
- Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Chenfei Xu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Chenlu Qiao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Shuiquan Chen
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China.
| | - Xiuxia Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| |
Collapse
|
5
|
Xu Y, Wang B, Ding S, Zhao M, Ji Y, Xie W, Feng Z, Feng Y. Hydrothermal carbonization of kitchen waste: An analysis of solid and aqueous products and the application of hydrochar to paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157953. [PMID: 35963404 DOI: 10.1016/j.scitotenv.2022.157953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Hydrothermal carbonization (HTC) technology can potentially be used to safely and sustainably utilize kitchen waste (KW). However, the characteristics of HTC solid products (hydrochar) and aqueous products (HAP) based on different types of KW have not yet been clarified. Here, four types of KW, cellulose-based (CL), skeleton-based (SK), protein-based (PT), and starch-based (ST) KW, were used for HTC at 180 °C, 220 °C, and 260 °C. The basic physicochemical properties and structures of hydrochars and HAP were analyzed, and the effects of different hydrochars on rice growth were characterized. HTC decreased the H/C and O/C of KW. All hydrochars were acidic (3.12 to 6.78) and the pH values increased with the HTC temperature, while high HTC temperature reduced the porosity of hydrochars. HTC promoted the enrichment of total carbon (up to 78.1 %), total nitrogen (up to 62.6 %), and total phosphorus (up to 171.6 %) in KW. More carbon (60.7-88.0 %) and nitrogen (up to 87.4 %) were present in the hydrochars than in the HAP. The relative content of C1s increased and O1s decreased in CL and ST hydrochars as the HTC temperature increased, while the opposite pattern was observed for SK and PT hydrochars. The dissolved organic matter (DOM) of different hydrochars and HAP were mainly humus-like substances. The biodegradability of the DOM in HAP was often higher than the corresponding hydrochar, and their DOM biodegradability increased with the HTC temperature. The content of heavy metals from different hydrochars did not exceed the relevant thresholds of fertilizer standards. Rice grain yield increased by 3.7-11.1 % in the hydrochar treatments without phosphate fertilizer addition compared with the control treatment. The results of this study provide new theoretical and empirical insights into the potential for HTC technology to be used for the recycling of KW and its products in the agricultural environment.
Collapse
Affiliation(s)
- Yongji Xu
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shudong Ding
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| | - Mengying Zhao
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yang Ji
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Wenping Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China
| | - Zhaozhong Feng
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
6
|
Wu L, Wu H, Qiu S, Zhou J, Liu C, Yue C, Du S. Insights into removal efficiency and mechanism of microwave remediation of soils contaminated with polyaromatic hydrocarbons of low molecular weight assisted by bluecoke-based conditioner. CHEMOSPHERE 2022; 301:134647. [PMID: 35460674 DOI: 10.1016/j.chemosphere.2022.134647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Microwave remediation of polyaromatic hydrocarbons-contaminated soils has garnered extensive attention owing to its cost effectiveness, time saving, homogeneous heating, and low energy consumption. The prepared bluecoke-based conditioner (KHCO3@BC) was used in this study to enhance microwave remediation and improve the naphthalene (NA) removal efficiency and soil properties. We investigated the optimal conditions, including the heating time, microwave power, bluecoke-based conditioner, initial concentration of NA, and moisture content of the soils. We evaluated the removal efficiency of NA and compared the remediation products after the addition of bluecoke, KHCO3, and KHCO3@BC conditioners. The results showed that the removal efficiency of NA reached 96.46% under the following optimized conditions: heating time of 20 min, microwave power of 700 W, 2 g of KHCO3@BC conditioner, initial NA concentration of 1 wt%, and soil moisture content of 4 wt%. The KHCO3@BC conditioner improved the contents of total K and fast-acting K during microwave remediation, and the mechanical components of the remediation soils were also optimized significantly. We proposed a feasible mechanism and evaluated the main reasons for the removal of NA from the soils based on the mechanical components of remediation soil and the remediation products, namely, gas stripping, boiling vaporization of NA, and breakage of soil grains by thermal stress.
Collapse
Affiliation(s)
- Lei Wu
- School of Chemistry and Chemical Engineering, Xi`an University of Architecture and Technology, Xi`an, 710055, China; Key Laboratory of Green Development and Utilization of Nonferrous Resources of Shaanxi Province, Xi'an, 710055, China
| | - Hongyan Wu
- School of Chemistry and Chemical Engineering, Xi`an University of Architecture and Technology, Xi`an, 710055, China
| | - Siwen Qiu
- School of Chemistry and Chemical Engineering, Xi`an University of Architecture and Technology, Xi`an, 710055, China
| | - Jun Zhou
- School of Chemistry and Chemical Engineering, Xi`an University of Architecture and Technology, Xi`an, 710055, China; Key Laboratory of Green Development and Utilization of Nonferrous Resources of Shaanxi Province, Xi'an, 710055, China.
| | - Changbo Liu
- State Key Laboratory of Iron & Steel Industry Environmental Protection, Beijing, 100088, China
| | - Changsheng Yue
- State Key Laboratory of Iron & Steel Industry Environmental Protection, Beijing, 100088, China
| | - Shuai Du
- Xinjiang Jinhui Zhaofeng Coke Co., Ltd., Aksu, 842300, China
| |
Collapse
|
7
|
Pyrolytic Remediation and Ecotoxicity Assessment of Fuel-Oil-Contaminated Soil. TOXICS 2022; 10:toxics10050245. [PMID: 35622658 PMCID: PMC9144531 DOI: 10.3390/toxics10050245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
Oil-contaminated soil is a major societal problem for humans and the environment. In this study, the pyrolysis method was applied to oil-contaminated soil used as a landfill and gas station site in Korea. The removal efficiency of the main components of oil-contaminated soils, such as total petroleum hydrocarbons (TPH), polyaromatic hydrocarbons (PAHs), unresolved complex mixture (UCM), and alkylated PAHs (Alk-PAHs) were measured, and the effect of temperature, treatment time, and moisture content on pyrolysis efficiency was studied. In order to evaluate the risk of soil from which pollutants were removed through pyrolysis, integrated ecotoxicity was evaluated using Daphnia magna and Allivibrio fischeri. The chemical and biological measurements in this study include contaminants of emerging concerns (CECs). Results showed that the pyrolysis was more efficient with higher treatment temperatures, moisture content, and treatment times. In addition, toxicity was reduced by 99% after pyrolysis, and the degree of toxicity was evaluated more sensitively in Allivibrio fischeri than in Daphnia magna. This study shows that weathered oil-contaminated soil can be effectively treated in a relatively short time through pyrolysis, as well as provides information on efficient conditions and the assessment of ecotoxicity.
Collapse
|
8
|
Haghsheno H, Arabani M. Geotechnical properties of oil-polluted soil: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32670-32701. [PMID: 35220539 DOI: 10.1007/s11356-022-19418-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Soil polluted by oil and its derivatives is a critical environmental issue worldwide that jeopardizes ecological systems and causes geotechnical problems. This review paper focuses on the previous studies concerning the impacts of oil pollution on soil geotechnical properties. To this end, related academic literature on this topic was investigated and discussed. The findings of this study demonstrated that the addition of oil pollution in coarse-grained soils significantly reduces particle surface roughness. On the other hand, in fine-grained soils, it results in flocculation and secondary aggregation of clay particles, less aggregated and loose packing in the soil matrix, the formation of isometric pores, the formation of fissure-like pores, and an increase in mesoporosity. In general, it was found that the geotechnical properties of oil-polluted soils are mostly determined by the physicochemical and/or physical interactions between the soil and contaminant. Additionally, previous research has demonstrated that oil pollutants alter the geotechnical properties of cohesive and non-cohesive soils significantly, including the Atterberg limits, particle-size distribution, compaction behavior, unconfined compressive strength, friction angle, cohesion, hydraulic conductivity, and consolidation characteristics. However, no general pattern could be established for the majority of them. Besides, it was found that the degree of geotechnical property alteration of oil-polluted soil is strongly influenced by the soil type and features, as well as the quantity, type, and chemical composition of oil pollutants.
Collapse
Affiliation(s)
- Hamed Haghsheno
- Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - Mahyar Arabani
- Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.
| |
Collapse
|
9
|
Zhu X, Wang Z, Luo Y, Ma Y, Xu Z, Wang L, Peng F, Pang Q, Li Y, He F, Xu B. Overlying water fluoride concentrations influence dissolved organic matter composition and migration from pore water in sediment via bacterial mechanisms. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 10:100163. [PMID: 36159732 PMCID: PMC9488004 DOI: 10.1016/j.ese.2022.100163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/16/2023]
Abstract
Fluoride (F-) is widespread in aquatic environments; however, it is not clear whether the fluctuation of F- concentrations in overlying lake water affects the composition and migration of dissolved organic matter (DOM) from sediment. A case study was presented in Sand Lake, China, and an experiment was conducted to analyze the influence of different F- concentrations in overlying water on DOM characteristics. Diffusion resulted in similarities in DOM components between overlying and pore waters, and bacterial activities and enzyme variation resulted in differences between them. Higher F- concentrations in overlying water resulted in a higher pH of pore water, which favored the enrichment of protein-like substances. Higher F- concentrations caused lower DOM concentrations and lower maximum fluorescence intensities (Fmax) of protein-like components in pore water. The F- concentrations had significantly negative correlations with Shannon indexes (P < 0.05). Thiobacillus influenced the migration of tyrosine-like substances by decreasing the pH of pore water. Trichococcus and Fusibacter altered the Fmax of protein-like, humic-like, and fulvic-like substances. The F- concentrations affected the DOM composition and migration due to the response of functional bacterial communities, which were positively correlated with the relative abundance of Thiobacillus and negatively correlated with the relative abundances of Trichococcus and Fusibacter. The high F- concentrations influenced the biosynthesis and degradation of protein-like substances by shifting the abundances of the relevant enzymes. The results of this study may provide ideas for investigating DOM cycling under the influence of F-, especially in lakes with fluctuations in F- concentrations.
Collapse
Affiliation(s)
- Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China
| | - Zibo Wang
- China National Environmental Monitoring Centre, No8-2 Anwai Dayangfang, Chaoyang District, Beijing, 100012, PR China
| | - Yidan Luo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China
- College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yushen Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China
- College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zhipeng Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China
- College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China
| | - Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China
| | - Yiping Li
- College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China
| |
Collapse
|