1
|
Yin X, Chen H, Jiang K, Zhang B, Li R, Zhu X, Sun L, Ng ZL, Su M. Distribution Characteristics of Nitrogen-Cycling Microorganisms in Deep-Sea Surface Sediments of Western South China Sea. Microorganisms 2024; 12:1901. [PMID: 39338575 PMCID: PMC11434414 DOI: 10.3390/microorganisms12091901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Nitrogen-cycling processes in the deep sea remain understudied. This study investigates the distribution of nitrogen-cycling microbial communities in the deep-sea surface sediments of the western South China Sea, using metagenomic sequencing and real-time fluorescent quantitative PCR techniques to analyze their composition and abundance, and the effects of 11 environmental parameters, including NH4+-N, NO3--N, NO2--N, PO43--P, total nitrogen (TN), total organic carbon (TOC), C/N ratio, pH, electrical conductivity (EC), SO42-, and Cl-. The phylum- and species-level microbial community compositions show that five sites can be grouped as a major cluster, with sites S1 and S9 forming a sub-cluster, and sites S13, S19, and S26 forming the other; whereas sites S3 and S5 constitute a separate cluster. This is also evident for nitrogen-cycling functional genes, where their abundance is influenced by distinct environmental conditions, including water depths (shallower at sites S1 and S9 against deeper at sites S13, S19, and S26) and unique geological features (sites S3 and S5), whereas the vertical distribution of nitrogen-cycling gene abundance generally shows a decreasing trend against sediment depth. Redundancy analysis (RDA) exploring the correlation between the 11 environmental parameters and microbial communities revealed that the NO2--N, C/N ratio, and TN significantly affect microbial community composition (p < 0.05). This study assesses the survival strategies of microorganisms within deep-sea surface sediments and their role in the marine nitrogen cycle.
Collapse
Affiliation(s)
- Xingjia Yin
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
- College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Hui Chen
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Kaixi Jiang
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
- Office of Laboratory Safety and Equipment Management, Beijing Normal University, Zhuhai 519087, China
| | - Boda Zhang
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
- Center for Environmental Monitoring of Geology, Shenzhen 518034, China
| | - Ruohong Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (R.L.); (X.Z.); (L.S.)
| | - Xinzhe Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (R.L.); (X.Z.); (L.S.)
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; (R.L.); (X.Z.); (L.S.)
| | - Zhi Lin Ng
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; (X.Y.); (H.C.); (K.J.); (B.Z.); (Z.L.N.)
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| |
Collapse
|
2
|
Qi Y, Zeng J, Tao J, Liu R, Fu R, Yan C, Liu X, Liu N, Hao Y. Unraveling the mechanisms behind sodium persulphate-induced changes in petroleum-contaminated aquifers' biogeochemical parameters and microbial communities. CHEMOSPHERE 2024; 351:141174. [PMID: 38218242 DOI: 10.1016/j.chemosphere.2024.141174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Sodium persulphate (PS) is a highly effective oxidising agent widely used in groundwater remediation and wastewater treatment. Although numerous studies have examined the impact of PS with respect to the removal efficiency of organic pollutants, the residual effects of PS exposure on the biogeochemical parameters and microbial ecosystems of contaminated aquifers are not well understood. This study investigates the effects of exposure to different concentrations of PS on the biogeochemical parameters of petroleum-contaminated aquifers using microcosm batch experiments. The results demonstrate that PS exposure increases the oxidation-reduction potential (ORP) and electrical conductivity (EC), while decreasing total organic carbon (TOC), dehydrogenase (DE), and polyphenol oxidase (PO) in the aquifer. Three-dimensional excitation-emission matrix (3D-EEM) analysis indicates PS is effective at reducing fulvic acid-like and humic acid-like substances and promoting microbial metabolic activity. In addition, PS exposure reduces the abundance of bacterial community species and the diversity index of evolutionary distance, with a more pronounced effect at high PS concentrations (31.25 mmol/L). Long-term (90 d) PS exposure results in an increase in the abundance of microorganisms with environmental resistance, organic matter degradation, and the ability to promote functional genes related to biological processes such as basal metabolism, transmission of genetic information, and cell motility of microorganisms. Structural equation modeling (SEM) further confirms that ORP and TOC are important drivers of change in the abundance of dominant phyla and functional genes. These results suggest exposure to different concentrations of PS has both direct and indirect effects on the dominant phyla and functional genes by influencing the geochemical parameters and enzymatic activity of the aquifer. This study provides a valuable reference for the application of PS in ecological engineering.
Collapse
Affiliation(s)
- Yuqi Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Jun Zeng
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Junshi Tao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, 510655, Guangdong, China
| | - Rentao Liu
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Renchuan Fu
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chao Yan
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiao Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Yanru Hao
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
3
|
Kumar Chaudhary D, Bajagain R, Seo D, Hong Y, Han S. Depth-dependent microbial communities potentially mediating mercury methylation and various geochemical processes in anthropogenically affected sediments. ENVIRONMENTAL RESEARCH 2023; 237:116888. [PMID: 37586452 DOI: 10.1016/j.envres.2023.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Metal contamination and other geochemical alterations affect microbial composition and functional activities, disturbing natural biogeochemical cycles. Therefore, it is essential to understand the influences of multi-metal and geochemical interactions on microbial communities. This work investigated the distributions of total mercury (THg), methylmercury (MeHg), and trace metals in the anthropogenically affected sediment. The microbial communities and functional genes profiles were further determined to explore their association with Hg-methylation and geochemical features. The levels of THg and MeHg in sediment cores ranged between 10 and 40 mg/kg and 0.01-0.16 mg/kg, respectively, with an increasing trend toward bottom horizons. The major metals present at all depths were Al, Fe, Mn, and Zn. The enrichment and contamination indices confirmed that the trace metals were highly enriched in the anthropogenically affected sediment. Various functional genes were detected in all strata, indicating the presence of active microbial metabolic processes. The microbial community profiles revealed that the phyla Proteobacteria, Bacteroidetes, Bathyarchaeota, and Euryarchaeota, and the genera Thauera, Woeseia, Methanomethylovorans, and Methanosarcina were the dominant microbes. Correlating major taxa with geochemical variables inferred that sediment geochemistry substantially affects microbial community and biogeochemical cycles. Furthermore, archaeal methanogens and the bacterial phyla Chloroflexi and Firmicutes may play crucial roles in enhancing MeHg levels. Overall, these findings shed new light on the microbial communities potentially involved in Hg-methylation process and other biogeochemical cycles.
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea
| | - Rishikesh Bajagain
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea
| | - DongGyun Seo
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea.
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
4
|
Chen L, Guo Y, Zhang S, Ma W. Simultaneous denitrification and electricity generation in a methane-powered bioelectrochemical system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10910. [PMID: 37461353 DOI: 10.1002/wer.10910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/29/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Bioelectrochemical system is a novel method for controlling down nitrate pollution, yet the feasibility of using methane as the electron donors for denitrification in this system remains unknown. In this study, using the effluent from mother BESs as inocula, a denitrifying anaerobic methane oxidation bioelectrochemical system was successfully started up in 92 days. When operated with 50 mmol/L phosphate buffer solution at pH 7 and 30°C, the maximum methane consumption, nitrate, and total nitrogen removal load reached 0.23 ± 0.01 mmol/d, 551.0 ± 22.1 mg N/m3 /d, and 64.0 ± 18.8 mg N/m3 /d, respectively. Meanwhile, the peak voltage of 93 ± 4 mV, the anodic coulombic efficiency of 6.99 ± 0.20%, and the maximum power density of 219.86 mW/m3 were obtained. The metagenomics profiles revealed that the dominant denitrifying bacteria in the cathodic chamber reduced most nitrate to nitrite through denitrification and assimilatory reduction. In the anodic chamber, various archaea including methanotrophs and methanogens converted methane via reverse methanogenesis to form formate (or H2 ), acetate, and methyl compounds, which were than utilized by electroactive bacteria to generate electricity. PRACTITIONER POINTS: A denitrifying anaerobic methane oxidation BES was successfully started up in 92 d. Simultaneous removal of methane and nitrate was achieved in the DAMO-BES. Functional genes related to AMO and denitrification were detected in the DAMO-BES. Methylocystis can mediate AMO in the anode and denitrification in the cathode.
Collapse
Affiliation(s)
- Long Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Yanli Guo
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
- Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, China
| | - Wenqing Ma
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
5
|
Functional and Seasonal Changes in the Structure of Microbiome Inhabiting Bottom Sediments of a Pond Intended for Ecological King Carp Farming. BIOLOGY 2022; 11:biology11060913. [PMID: 35741434 PMCID: PMC9220171 DOI: 10.3390/biology11060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Bottom sediments are usually classified as extreme habitats for microorganisms. They are defined as matter deposited on the bottom of water bodies through the sedimentation process. The quality of sediments is extremely important for the good environmental status of water, because they are an integral part of the surface water environment. Microorganisms living in sediments are involved in biogeochemical transformations and play a fundamental role in maintaining water purity, decomposition of organic matter, and primary production. As a rule, studies on bottom sediments focus on monitoring their chemistry and pollution, while little is known about the structure of bacterial communities inhabiting this extreme environment. In this study, Next-Generation Sequencing (NGS) was combined with the Community-Level Physiological Profiling (CLPP) technique to obtain a holistic picture of bacterial biodiversity in the bottom sediments from Cardinal Pond intended for ecological king carp farming. It was evident that the bottom sediments of the studied pond were characterized by a rich microbiota composition, whose structure and activity depended on the season, and the most extensive modifications of the biodiversity and functionality of microorganisms were noted in summer. Abstract The main goal of the study was to determine changes in the bacterial structure in bottom sediments occurring over the seasons of the year and to estimate microbial metabolic activity. Bottom sediments were collected four times in the year (spring, summer, autumn, and winter) from 10 different measurement points in Cardinal Pond (Ślesin, NW Poland). The Next-Generation Sequencing (MiSeq Illumina) and Community-Level Physiological Profiling techniques were used for identification of the bacterial diversity structure and bacterial metabolic and functional activities over the four seasons. It was evident that Proteobacteria, Acidobacteria, and Bacteroidetes were the dominant phyla, while representatives of Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria predominated at the class level in the bottom sediments. An impact of the season on biodiversity and metabolic activity was revealed with the emphasis that the environmental conditions in summer modified the studied parameters most strongly. Carboxylic and acetic acids and carbohydrates were metabolized most frequently, whereas aerobic respiration I with the use of cytochrome C was the main pathway used by the microbiome of the studied bottom sediments.
Collapse
|