1
|
Władziński A, Kosowska M, Wityk P, Łuczkiewicz A, Gnyba M, Szczerska M. Biomarker Detection in the Wastewater Phantom. JOURNAL OF BIOPHOTONICS 2025:e202500003. [PMID: 40357981 DOI: 10.1002/jbio.202500003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 05/15/2025]
Abstract
Research trends are focused on developing solutions that monitor public health utilizing sewage surveillance, as wastewater can provide valuable information on the presence of specific biomarkers. Such information can serve as an indication of immune response at the community level, delivering a noninvasive measure of e.g., vaccination effectiveness. In this paper, we present an optical wastewater phantom fabrication, characterization, and comparison to real wastewater samples. Raman spectroscopy was used for the investigation of the molecular compositions of treated wastewater and artificial wastewater phantoms, and the refractometer to investigate refractive index values dependence on temperature. Selected biomarkers concentrations (10-6 to 10-1 mg/mL) were added to the validated phantoms. The selective detection of SARS-CoV-2 immunoglobulin G (IgG) was achieved through specific surface modification of the fiber-optic probe, allowing only targeted biomarkers to attach and influence the measurement signal. Successful detection of 10-6 mg/mL IgG concentration in the wastewater phantom was achieved within 5 min.
Collapse
Affiliation(s)
- Adam Władziński
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdansk, Poland
| | - Monika Kosowska
- Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Paweł Wityk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| | - Marcin Gnyba
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdansk, Poland
| | - Małgorzata Szczerska
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdansk, Poland
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
2
|
Mondal R, Shaw S, Mandal P, Dam P, Mandal AK. Recent advances in the biosensors application for reviving infectious disease management in silkworm model: a new way to combat microbial pathogens. Arch Microbiol 2024; 206:206. [PMID: 38575737 DOI: 10.1007/s00203-024-03933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
Silkworms are an essential economic insect but are susceptible to diseases during rearing, leading to yearly losses in cocoon production. While chemical control is currently the primary method to reduce disease incidences, its frequent use can result in loss of susceptibility to pathogens and, ultimately, antibiotic resistance. To effectively prevent or control disease, growers must accurately, sensitively, and quickly detect causal pathogens to determine the best management strategies. Accurate recognition of diseased silkworms can prevent pathogen transmission and reduce cocoon loss. Different pathogen detection methods have been developed to achieve this objective, but they need more precision, specificity, consistency, and promptness and are generally unsuitable for in-situ analysis. Therefore, detecting silkworm diseases under rearing conditions is still an unsolved problem. As a consequence of this, there is an enormous interest in the development of biosensing systems for the early and precise identification of pathogens. There is also significant room for improvement in translating novel biosensor techniques to identify silkworm pathogens. This study explores the types of silkworm diseases, their symptoms, and their causal microorganisms. Moreover, we compare the traditional approaches used in silkworm disease diagnostics along with the latest sensing technologies, with a precise emphasis on lateral flow assay-based biosensors that can detect and manage silkworm pathogens.
Collapse
Affiliation(s)
- Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India
| | - Shubhajit Shaw
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India
| | - Pankaj Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India
| | - Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India.
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, 733134, India.
| |
Collapse
|
3
|
Kallem P, Hegab HM, Alsafar H, Hasan SW, Banat F. SARS-CoV-2 detection and inactivation in water and wastewater: review on analytical methods, limitations and future research recommendations. Emerg Microbes Infect 2023; 12:2222850. [PMID: 37279167 PMCID: PMC10286680 DOI: 10.1080/22221751.2023.2222850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in wastewater. Wastewater-based epidemiology (WBE) is a practical and cost-effective tool for the assessment and controlling of pandemics and probably for examining SARS-CoV-2 presence. Implementation of WBE during the outbreaks is not without limitations. Temperature, suspended solids, pH, and disinfectants affect the stability of viruses in wastewater. Due to these limitations, instruments and techniques have been utilized to detect SARS-CoV-2. SARS-CoV-2 has been detected in sewage using various concentration methods and computer-aided analyzes. RT-qPCR, ddRT-PCR, multiplex PCR, RT-LAMP, and electrochemical immunosensors have been employed to detect low levels of viral contamination. Inactivation of SARS-CoV-2 is a crucial preventive measure against coronavirus disease 2019 (COVID-19). To better assess the role of wastewater as a transmission route, detection, and quantification methods need to be refined. In this paper, the latest improvements in quantification, detection, and inactivation of SARS-CoV-2 in wastewater are explained. Finally, limitations and future research recommendations are thoroughly described.
Collapse
Affiliation(s)
- Parashuram Kallem
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Environmental Health and Safety Program, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hanaa M Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Emirates Bio-research center, Ministry of Interior, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Ferreira LMC, Reis IF, Martins PR, Marcolino-Junior LH, Bergamini MF, Camargo JR, Janegitz BC, Vicentini FC. Using low-cost disposable immunosensor based on flexible PET screen-printed electrode modified with carbon black and gold nanoparticles for sensitive detection of SARS-CoV-2. TALANTA OPEN 2023; 7:100201. [PMID: 36959870 PMCID: PMC9998283 DOI: 10.1016/j.talo.2023.100201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
To help meet the global demand for reliable and inexpensive COVID-19 testing and environmental analysis of SARS-CoV-2, the present work reports the development and application of a highly efficient disposable electrochemical immunosensor for the detection of SARS-CoV-2 in clinical and environmental matrices. The sensor developed is composed of a screen-printed electrode (SPE) array which was constructed using conductive carbon ink printed on polyethylene terephthalate (PET) substrate made from disposable soft drink bottles. The recognition site (Spike S1 Antibody (anti-SP Ab)) was covalently immobilized on the working electrode surface, which was effectively modified with carbon black (CB) and gold nanoparticles (AuNPs). The immunosensing material was subjected to a multi-technique characterization analysis using X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) with elemental analysis via energy dispersive spectroscopy (EDS). The electrochemical characterization of the electrode surface and analytical measurements were performed using cyclic voltammetry (CV) and square-wave voltammetry (SWV). The immunosensor was easily applied for the conduct of rapid diagnoses or accurate quantitative environmental analyses by setting the incubation period to 10 min or 120 min. Under optimized conditions, the biosensor presented limits of detection (LODs) of 101 fg mL-1 and 46.2 fg mL-1 for 10 min and 120 min incubation periods, respectively; in addition, the sensor was successfully applied for SARS-CoV-2 detection and quantification in clinical and environmental samples. Considering the costs of all the raw materials required for manufacturing 200 units of the AuNP-CB/PET-SPE immunosensor, the production cost per unit is 0.29 USD.
Collapse
Affiliation(s)
- Luís M C Ferreira
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000, Buri, SP, Brazil
| | - Isabela F Reis
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000, Buri, SP, Brazil
| | - Paulo R Martins
- Institute of Chemistry, Federal University of Goiás, Av. Esperança, Goiania, GO 74690-900, Brazil
| | - Luiz H Marcolino-Junior
- Laboratory of Electrochemical Sensors (LabSensE) - Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Marcio F Bergamini
- Laboratory of Electrochemical Sensors (LabSensE) - Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Jessica R Camargo
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, SP, Brazil
| | - Bruno C Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, SP, Brazil
| | - Fernando C Vicentini
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000, Buri, SP, Brazil
| |
Collapse
|
5
|
Tyśkiewicz R, Fedorowicz M, Nakonieczna A, Zielińska P, Kwiatek M, Mizak L. Electrochemical, optical and mass-based immunosensors: A comprehensive review of Bacillus anthracis detection methods. Anal Biochem 2023; 675:115215. [PMID: 37343693 DOI: 10.1016/j.ab.2023.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
A biosensor is an analytical device whose main components include transducer and bioreceptor segments. The combination of biological recognition with the ligand is followed by transformation into physical or chemical signals. Many publications describe biological sensors as user-friendly, easy, portable, and less time-consuming than conventional methods. Among major categories of methods for the detection of Bacillus anthracis, such as culture-based microbiological method, polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), microarray-based techniques sensors with bioreceptors have been highlighted which particular emphasis is placed on herein. There are several types of biosensors based on various chemical or physical transducers (e.g., electrochemical, optical, piezoelectric, thermal or magnetic electrodes) and the type of biological materials used (e.g., enzymes, nucleic acids, antibodies, cells, phages or tissues). In recent decades, antibody-based sensors have increasingly gained popularity due to their reliability, sensitivity and rapidness. The fundamental principle of antibody-based sensors is mainly based on the molecular recognition between antigens and antibodies. Therefore, immunosensors that detect B. anthracis surface antigens can provide a rapid tool for detecting anthrax bacilli and spores, especially in situ. This review provides a comprehensive summary of immunosensor-based methods using electrochemical, optical, and mass-based transducers to detect B. anthracis.
Collapse
Affiliation(s)
- Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network - New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110, Puławy, Poland.
| | - Magdalena Fedorowicz
- Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Lubelska 4, 24-100, Puławy, Poland
| | - Aleksandra Nakonieczna
- Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Lubelska 4, 24-100, Puławy, Poland
| | - Paulina Zielińska
- Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Lubelska 4, 24-100, Puławy, Poland
| | - Magdalena Kwiatek
- Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Lubelska 4, 24-100, Puławy, Poland
| | - Lidia Mizak
- Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Lubelska 4, 24-100, Puławy, Poland
| |
Collapse
|
6
|
Jaradat H, Al-Hamry A, Ibbini M, Fourati N, Kanoun O. Novel Sensitive Electrochemical Immunosensor Development for the Selective Detection of HopQ H. pylori Bacteria Biomarker. BIOSENSORS 2023; 13:bios13050527. [PMID: 37232889 DOI: 10.3390/bios13050527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Helicobacter pylori (H. pylori) is a highly contagious pathogenic bacterium that can cause gastrointestinal ulcers and may gradually lead to gastric cancer. H. pylori expresses the outer membrane HopQ protein at the earliest stages of infection. Therefore, HopQ is a highly reliable candidate as a biomarker for H. pylori detection in saliva samples. In this work, an H. pylori immunosensor is based on detecting HopQ as an H. pylori biomarker in saliva. The immunosensor was developed by surface modification of screen-printed carbon electrodes (SPCE) with MWCNT-COOH decorated with gold nanoparticles (AuNP) followed by HopQ capture antibody grafting on SPCE/MWCNT/AuNP surface using EDC/S-NHS chemistry. The sensor performance was investigated utilizing various methods, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscope (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX). H. pylori detection performance in spiked saliva samples was evaluated by square wave voltammetry (SWV). The sensor is suitable for HopQ detection with excellent sensitivity and linearity in the 10 pg/mL-100 ng/mL range, with a 2.0 pg/mL limit of detection (LOD) and an 8.6 pg/mL limit of quantification (LOQ). The sensor was tested in saliva at 10 ng/mL, and recovery of 107.6% was obtained by SWV. From Hill's model, the dissociation constant Kd for HopQ/HopQ antibody interaction is estimated to be 4.60 × 10-10 mg/mL. The fabricated platform shows high selectivity, good stability, reproducibility, and cost-effectiveness for H. pylori early detection due to the proper choice of biomarker, the nanocomposite material utilization to boost the SPCE electrical performance, and the intrinsic selectivity of the antibody-antigen approach. Additionally, we provide insight into possible future aspects that researchers are recommended to focus on.
Collapse
Affiliation(s)
- Hussamaldeen Jaradat
- Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Ammar Al-Hamry
- Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Mohammed Ibbini
- Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Najla Fourati
- SATIE Laboratory, UMR CNRS 8029, Conservatoire National des Arts et Métiers, 75003 Paris, France
| | - Olfa Kanoun
- Measurement and Sensor Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
7
|
Sen P, Zhang Z, Li P, Adhikari BR, Guo T, Gu J, MacIntosh AR, van der Kuur C, Li Y, Soleymani L. Integrating Water Purification with Electrochemical Aptamer Sensing for Detecting SARS-CoV-2 in Wastewater. ACS Sens 2023; 8:1558-1567. [PMID: 36926840 PMCID: PMC10042147 DOI: 10.1021/acssensors.2c02655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Wastewater analysis of pathogens, particularly SARS-CoV-2, is instrumental in tracking and monitoring infectious diseases in a population. This method can be used to generate early warnings regarding the onset of an infectious disease and predict the associated infection trends. Currently, wastewater analysis of SARS-CoV-2 is almost exclusively performed using polymerase chain reaction for the amplification-based detection of viral RNA at centralized laboratories. Despite the development of several biosensing technologies offering point-of-care solutions for analyzing SARS-CoV-2 in clinical samples, these remain elusive for wastewater analysis due to the low levels of the virus and the interference caused by the wastewater matrix. Herein, we integrate an aptamer-based electrochemical chip with a filtration, purification, and extraction (FPE) system for developing an alternate in-field solution for wastewater analysis. The sensing chip employs a dimeric aptamer, which is universally applicable to the wild-type, alpha, delta, and omicron variants of SARS-CoV-2. We demonstrate that the aptamer is stable in the wastewater matrix (diluted to 50%) and its binding affinity is not significantly impacted. The sensing chip demonstrates a limit of detection of 1000 copies/L (1 copy/mL), enabled by the amplification provided by the FPE system. This allows the integrated system to detect trace amounts of the virus in native wastewater and categorize the amount of contamination into trace (<10 copies/mL), medium (10-1000 copies/mL), or high (>1000 copies/mL) levels, providing a viable wastewater analysis solution for in-field use.
Collapse
Affiliation(s)
- Payel Sen
- Department of Engineering Physics,
McMaster University, Hamilton L8S 4K1,
Canada
| | - Zijie Zhang
- Department of Biochemistry and Biomedical Sciences,
McMaster University, Hamilton L8S 4K1,
Canada
| | - Phoebe Li
- Department of Physics, McMaster
University, Hamilton L8S 4K1, Canada
| | - Bal Ram Adhikari
- Department of Engineering Physics,
McMaster University, Hamilton L8S 4K1,
Canada
| | - Tianyi Guo
- Forsee Instruments, Ltd.,
Hamilton L8P0A1, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences,
McMaster University, Hamilton L8S 4K1,
Canada
| | | | | | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences,
McMaster University, Hamilton L8S 4K1,
Canada
- School of Biomedical Engineering, McMaster
University, Hamilton L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease
Research, McMaster University, Hamilton L8S 4K1,
Canada
| | - Leyla Soleymani
- Department of Engineering Physics,
McMaster University, Hamilton L8S 4K1,
Canada
- School of Biomedical Engineering, McMaster
University, Hamilton L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease
Research, McMaster University, Hamilton L8S 4K1,
Canada
| |
Collapse
|
8
|
Chen H, Zhang J, Huang R, Wang D, Deng D, Zhang Q, Luo L. The Applications of Electrochemical Immunosensors in the Detection of Disease Biomarkers: A Review. Molecules 2023; 28:molecules28083605. [PMID: 37110837 PMCID: PMC10144570 DOI: 10.3390/molecules28083605] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Disease-related biomarkers may serve as indicators of human disease. The clinical diagnosis of diseases may largely benefit from timely and accurate detection of biomarkers, which has been the subject of extensive investigations. Due to the specificity of antibody and antigen recognition, electrochemical immunosensors can accurately detect multiple disease biomarkers, including proteins, antigens, and enzymes. This review deals with the fundamentals and types of electrochemical immunosensors. The electrochemical immunosensors are developed using three different catalysts: redox couples, typical biological enzymes, and nanomimetic enzymes. This review also focuses on the applications of those immunosensors in the detection of cancer, Alzheimer's disease, novel coronavirus pneumonia and other diseases. Finally, the future trends in electrochemical immunosensors are addressed in terms of achieving lower detection limits, improving electrode modification capabilities and developing composite functional materials.
Collapse
Affiliation(s)
- Huinan Chen
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jialu Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Rong Huang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dejia Wang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qixian Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200436, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing 312000, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Ma C, Lu D, Gan H, Yao Z, Zhu DZ, Luo J, Fu Q, Kurup P. The critical experimental aspects for developing pathogen electrochemical biosensors: A lesson during the COVID-19 pandemic. Talanta 2022:124009. [PMCID: PMC9562616 DOI: 10.1016/j.talanta.2022.124009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Though the bitter global pandemic posed a severe public health threat, it set an unprecedented stage for different research teams to present various technologies for detecting SARS-CoV-2, providing a rare and hard-won lesson for one to comprehensively survey the core experimental aspects in developing pathogens electrochemical biosensors. Apart from collecting all the published biosensor studies, we focused on the effects and consequences of using different receptors, such as antibodies, aptamers, ACE 2, and MIPs, which are one of the core topics of developing a pathogen biosensor. In addition, we tried to find an appropriate and distinctive application scenario (e.g., wastewater-based epidemiology) to maximize the advantages of using electrochemical biosensors to detect pathogens. Based on the enormous amount of information from those published studies, features that fit and favor wastewater pathogen detection can be picked up and integrated into a specific strategy to perform quantitative measurements in wastewater samples.
Collapse
Affiliation(s)
- Chen Ma
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Dingnan Lu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author. Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Huihui Gan
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Zhiyuan Yao
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - David Z. Zhu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jiayue Luo
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Pradeep Kurup
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author
| |
Collapse
|
10
|
Guerrero-Esteban T, Gutiérrez-Sánchez C, Villa-Manso AM, Revenga-Parra M, Pariente F, Lorenzo E. Sensitive SARS-CoV-2 detection in wastewaters using a carbon nanodot-amplified electrochemiluminescence immunosensor. Talanta 2022; 247:123543. [PMID: 35594835 PMCID: PMC9101780 DOI: 10.1016/j.talanta.2022.123543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
Given the great utility that having fast, efficient and cost-effective methods for the detection of SARS-CoV-2 in wastewater can have in controlling the pandemic caused by this virus, the development of new dependable and specific SARS-CoV-2 coronavirus sensing devices to be applied to wastewater is essential to promote public health interventions. Therefore, herein we propose a new method to detect SARS-CoV-2 in wastewater based on a carbon nanodots-amplified electrochemiluminescence immunosensor for the determination of the SARS-CoV-2 Spike S1 protein. For the construction of the immunosensor, N-rich carbon nanodots have been synthetized with a double function: to contribute as amplifiers of the electrochemiluminescent signal in presence of [Ru(bpy)3]2+ and as antibody supports by providing functional groups capable of covalently interacting with the SARS-CoV-2 Spike S1 antibody. The proposed ECL immunosensor has demonstrated a high specificity in presence of other virus-related proteins and responded linearly to SARS-CoV-2 Spike S1 concentration over a wide range with a limit of detection of 1.2 pg/mL. The immunosensor has an excellent stability and achieved the detection of SARS-CoV-2 Spike S1 in river and urban wastewater, which supplies a feasible and reliable sensing platform for early virus detection and therefore to protect the population. The detection of SARS-CoV-2 Spike S1 in urban wastewater can be used as a tool to measure the circulation of the virus in the population and to detect a possible resurgence of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Mónica Revenga-Parra
- Departamento de Química Analítica y Análisis Instrumental, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain; IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Félix Pariente
- Departamento de Química Analítica y Análisis Instrumental, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain; IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Mao S, Fu L, Yin C, Liu X, Karimi-Maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022; 12:22592-22607. [PMID: 36105989 PMCID: PMC9372877 DOI: 10.1039/d2ra04162f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
The global pandemic of COVID-19, which began in late 2019, has resulted in extremely high morbidity and severe mortality worldwide, with important implications for human health, international trade, and national politics. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the primary pathogen causing COVID-19. Analytical chemistry played an important role in this global epidemic event, and detection of SARS-CoV-2 even became a part of daily life. Analytical chemists have devoted much effort and enthusiasm to this event, and different analytical techniques have shown very rapid development. Electrochemical biosensors are highly efficient, sensitive, and cost-effective and have been used to detect many highly pathogenic viruses long before this event. However, another fact is that electrochemical biosensors are not the technology of choice for most detection applications. This review describes for the first time the role played by electrochemical biosensors in SARS-CoV-2 detection from a bibliometric perspective. This paper analyzed 254 relevant research papers up to June 2022. The contributions of different countries and institutions to this topic were analyzed. Keyword analysis was used to explore different methodological attempts of electrochemical detection techniques. More importantly, we are trying to find an answer to the question: do electrochemical biosensors have the potential to become a genuinely employable detection technology in an outbreak of infectious disease?
Collapse
Affiliation(s)
- Shudan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou 310021 PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital Beijing China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital Beijing China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China Xiyuan Ave 611731 Chengdu China
- Department of Chemical Engineering, Quchan University of Technology Quchan 9477177870 Iran
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, 2028 Johannesburg 17011 South Africa
| |
Collapse
|
12
|
Białobrzeska W, Ficek M, Dec B, Osella S, Trzaskowski B, Jaramillo-Botero A, Pierpaoli M, Rycewicz M, Dashkevich Y, Łęga T, Malinowska N, Cebula Z, Bigus D, Firganek D, Bięga E, Dziąbowska K, Brodowski M, Kowalski M, Panasiuk M, Gromadzka B, Żołędowska S, Nidzworski D, Pyrć K, Goddard WA, Bogdanowicz R. Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation. Biosens Bioelectron 2022; 209:114222. [PMID: 35430407 PMCID: PMC8989705 DOI: 10.1016/j.bios.2022.114222] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 01/09/2023]
Abstract
The 21st century has already brought us a plethora of new threats related to viruses that emerge in humans after zoonotic transmission or drastically change their geographic distribution or prevalence. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first spotted at the end of 2019 to rapidly spread in southwest Asia and later cause a global pandemic, which paralyzes the world since then. We have designed novel immunosensors targeting conserved protein sequences of the N protein of SARS-CoV-2 based on lab-produced and purified anti-SARS-CoV-2 nucleocapsid antibodies that are densely grafted onto various surfaces (diamond/gold/glassy carbon). Titration of antibodies shows very strong reactions up to 1:72 900 dilution. Next, we showed the mechanism of interactions of our immunoassay with nucleocapsid N protein revealing molecular recognition by impedimetric measurements supported by hybrid modeling results with both density functional theory and molecular dynamics methods. Biosensors allowed for a fast (in less than 10 min) detection of SARS-CoV-2 virus with a limit of detection from 0.227 ng/ml through 0.334 ng/ml to 0.362 ng/ml for glassy carbon, boron-doped diamond, and gold surfaces, respectively. For all tested surfaces, we obtained a wide linear range of concentrations from 4.4 ng/ml to 4.4 pg/ml. Furthermore, our sensor leads to a highly specific response to SARS-CoV-2 clinical samples versus other upper respiratory tract viruses such as influenza, respiratory syncytial virus, or Epstein-Barr virus. All clinical samples were tested simultaneously on biosensors and real-time polymerase chain reactions.
Collapse
|
13
|
Mahmoudi T, Naghdi T, Morales-Narváez E, Golmohammadi H. Toward smart diagnosis of pandemic infectious diseases using wastewater-based epidemiology. Trends Analyt Chem 2022; 153:116635. [PMID: 35440833 PMCID: PMC9010328 DOI: 10.1016/j.trac.2022.116635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
COVID-19 outbreak revealed fundamental weaknesses of current diagnostic systems, particularly in prediction and subsequently prevention of pandemic infectious diseases (PIDs). Among PIDs detection methods, wastewater-based epidemiology (WBE) has been demonstrated to be a favorable mean for estimation of community-wide health. Besides, by going beyond purely sensing usages of WBE, it can be efficiently exploited in Healthcare 4.0/5.0 for surveillance, monitoring, control, and above all prediction and prevention, thereby, resulting in smart sensing and management of potential outbreaks/epidemics/pandemics. Herein, an overview of WBE sensors for PIDs is presented. The philosophy behind the smart diagnosis of PIDs using WBE with the help of digital technologies is then discussed, as well as their characteristics to be met. Analytical techniques that are pushing the frontiers of smart sensing and have a high potential to be used in the smart diagnosis of PIDs via WBE are surveyed. In this context, we underscore key challenges ahead and provide recommendations for implementing and moving faster toward smart diagnostics.
Collapse
Affiliation(s)
- Tohid Mahmoudi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Tina Naghdi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C. Loma del Bosque 115, Lomas del Campestre, 37150, León, Guanajuato, Mexico
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| |
Collapse
|
14
|
Abstract
Electrochemical immunosensors are the largest class of affinity biosensing devices with strong practicability. In recent years, MXenes have become hotspot materials of electrochemical biosensors for their excellent properties, including large specific surface area, good electrical conductivity, high hydrophilicity and rich functional groups. In this review, we firstly introduce the composition and structure of MXenes, as well as their properties relevant to the construction of biosensors. Then, we summarize the recent advances of MXenes-based electrochemical immunosensors, focusing on the roles of MXenes in various electrochemical immunosensors. Finally, we analyze current problems of MXenes-based electrochemical immunosensors and propose an outlook for this research field.
Collapse
|
15
|
Ramírez-Chavarría RG, Castillo-Villanueva E, Alvarez-Serna BE, Carrillo-Reyes J, Ramírez-Zamora RM, Buitrón G, Alvarez-Icaza L. Loop-mediated isothermal amplification-based electrochemical sensor for detecting SARS-CoV-2 in wastewater samples. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107488. [PMID: 35251932 PMCID: PMC8883760 DOI: 10.1016/j.jece.2022.107488] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/07/2022] [Accepted: 02/26/2022] [Indexed: 05/10/2023]
Abstract
The current pandemic COVID-19 caused by the coronavirus SARS-CoV-2, has generated different economic, social and public health problems. Moreover, wastewater-based epidemiology could be a predictor of the virus rate of spread to alert on new outbreaks. To assist in epidemiological surveillance, this work introduces a simple, low-cost and affordable electrochemical sensor to specifically detect N and ORF1ab genes of the SARS-CoV-2 genome. The proposed sensor works based on screen-printed electrodes acting as a disposable test strip, where the reverse transcription loop-mediated isothermal amplification (RT-LAMP) reaction takes place. Electrochemical detection relies upon methylene blue as a redox intercalator probe, to provide a diffusion-controlled current encoding the presence and concentration of RT-LAMP products, namely amplicons or double-stranded DNA. We test the performance of the sensor by testing real wastewater samples using end-point and time course measurements. Results show the ability of the electrochemical test strip to specifically detect and quantify RT-LAMP amplicons below to ~ 2.5 × 10-6 ng/μL exhibiting high reproducibility. In this sense, our RT-LAMP electrochemical sensor is an attractive, efficient and powerful tool for rapid and reliable wastewater-based epidemiology studies.
Collapse
Affiliation(s)
| | - Elizabeth Castillo-Villanueva
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Bryan E Alvarez-Serna
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Julián Carrillo-Reyes
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | | | - Germán Buitrón
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Luis Alvarez-Icaza
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
16
|
Role of Silver Nanoparticle-Doped 2-Aminodiphenylamine Polymeric Material in the Detection of Dopamine (DA) with Uric Acid Interference. MATERIALS 2022; 15:ma15041308. [PMID: 35207848 PMCID: PMC8875575 DOI: 10.3390/ma15041308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023]
Abstract
A viable electrochemical approach for the detection of dopamine (DA) in uric acid (UA) utilizing a silver nanoparticle-doped 2-aminodiphenylamine (AgNPs-2ADPA) electrode was invented. The electrochemical performance of DA showed that the incorporated electrode displayed outstanding electrocatalytic performance to the electrochemical oxidation of DA. In our study, the AgNPs-2ADPA exhibits remarkable catalytic activity, retaining high current value and resilience when employed as a working electrode component for electrocatalytic detection of DA. We have also utilized the bare and polymeric-2ADPA in DA detection for a comparison study. This method offers a facile route with extraordinary sensitivity, selectivity, and strength for the voltammetric detection of DA, even in the presence of UA and ascorbic acid (AA) as interferents, that can be employed for pharmaceutical and biological specimens.
Collapse
|
17
|
Azizi S, Gholivand MB, Amiri M, Manouchehri I, Moradian R. Carbon dots-thionine modified aptamer-based biosensor for highly sensitive cocaine detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Haotian R, Zhu Z, Cai Y, Wang W, Wang Z, Liang A, Luo A. Application of Covalent Organic Framework-Based Electrochemical Biosensors in Biological Sample Detection. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22070339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Yu M, Liu M, Li Y. Point-of-Care Based Electrochemical Immunoassay for Epstein-Barr Virus Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5711384. [PMID: 35677726 PMCID: PMC9170392 DOI: 10.1155/2022/5711384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 05/10/2023]
Abstract
This work describes a label-free electrochemical immunosensor for the sensing of Epstein-Barr virus (EBV) with high sensitivity. First, a monolayer of 1,6-hexanedithiol (HDT) was fabricated on the screen-printed electrode surface by the interaction between sulfur atoms and SPE. AuNPs can be modified on the electrode by the Au-S bond formed between the HDT-free group and Au atom in AuNPs. Protein A is then adsorbed onto AuNPs. Several parameters were optimized. The optimum concentration of protein A is 0.6 mg/mL. The optimum immobilization time for protein A is 90 min. The optimum concentration of antibody is 80 μg/mL. The optimum immobilization time for antibody is 90 min. Directional immobilization of EBV antibody is achieved by high affinity binding of protein A to the Fc segment of antibody. When antigen specifically binds to antibody, the formation of immune complexes blocks electron transfer of [Fe(CN)6]4-/3- and is reflected in the detection of cyclic voltammetry/electrochemical impedance spectroscopy. The detection range is 1 pg/mL-l00 ng/mL with a LOD of 0.1 pg/mL. In addition, the proposed sensor exhibited an excellent antiinterference property.
Collapse
Affiliation(s)
- Miao Yu
- Department of Otorhinolaryngology, The First Hospital of China Medical University, No. 155 Nnajing Street Heping District, Shenyang 110000, Liaoning Province, China
| | - Ming Liu
- Logistics Support Department, Shengjing Hospital of China Medical University, No. 36 Sanhao Street Heping District, Shenyang 110000, Liaoning Province, China
| | - Yuan Li
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nnajing Street Heping District, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
20
|
Meng X, Wang X, Meng S, Wang Y, Liu H, Liang D, Fan W, Min H, Huang W, Chen A, Zhu H, Peng G, Liu J, Qiu Z, Wang T, Yang L, Wei Y, Huo P, Zhang D, Liu Y. A Global Overview of SARS-CoV-2 in Wastewater: Detection, Treatment, and Prevention. ACS ES&T WATER 2021; 1:2174-2185. [PMID: 37566346 PMCID: PMC8457323 DOI: 10.1021/acsestwater.1c00146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 05/06/2023]
Abstract
A novel coronavirus (SARS-CoV-2) causing corona virus disease 2019 (COVID-19) has attracted global attention due to its highly infectious and pathogenic properties. Most of current studies focus on aerosols released from infected individuals, but the presence of SARS-CoV-2 in wastewater also should be examined. In this review, we used bibliometrics to statistically evaluate the importance of water-related issues in the context of COVID-19. The results show that the levels and transmission possibilities of SARS-CoV-2 in wastewater are the main concerns, followed by potential secondary pollution by the intensive use of disinfectants, sludge disposal, and the personal safety of workers. The presence of SARS-CoV-2 in wastewater requires more attention during the COVID-19 pandemic. Thus, the most effective techniques, i.e., wastewater-based epidemiology and quantitative microbial risk assessment, for virus surveillance in wastewater are systematically analyzed. We further explicitly review and analyze the successful operation of a sewage treatment plant in Huoshenshan Hospital in China as an example and reference for other sewage treatment systems to properly ensure discharge safety and tackle the COVID-19 pandemic. This review offers deeper insight into the prevention and control of SARS-CoV-2 and similar viruses in the post-COVID-19 era from a wastewater perspective.
Collapse
Affiliation(s)
- Xianghao Meng
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Xuye Wang
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Shujuan Meng
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Ying Wang
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Hongju Liu
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Dawei Liang
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Wenhong Fan
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Hongping Min
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Wenhai Huang
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Anming Chen
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Haijun Zhu
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Guanping Peng
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Jun Liu
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Zhenhuan Qiu
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Tao Wang
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Linyan Yang
- School of Resources and Environmental Engineering,
East China University of Science and Technology, Shanghai
200237, P. R. China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and
Risk Assessment, Chinese Research Academy of Environmental
Science, Beijing 100012, P. R. China
| | - Peishu Huo
- School of Environment, Tsinghua
University, Beijing 100084, P. R. China
| | - Dayi Zhang
- School of Environment, Tsinghua
University, Beijing 100084, P. R. China
| | - Yu Liu
- School of Civil and Environmental Engineering,
Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798
| |
Collapse
|