1
|
Khare P, Krechmer JE, Machesky JE, Hass-Mitchell T, Cao C, Wang J, Majluf F, Lopez-Hilfiker F, Malek S, Wang W, Seltzer K, Pye HO, Commane R, McDonald BC, Toledo-Crow R, Mak JE, Gentner DR. Ammonium-adduct chemical ionization to investigate anthropogenic oxygenated gas-phase organic compounds in urban air. ATMOSPHERIC CHEMISTRY AND PHYSICS 2022; 22:14377-14399. [PMID: 36506646 PMCID: PMC9728622 DOI: 10.5194/acp-22-14377-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Volatile chemical products (VCPs) and other non-combustion-related sources have become important for urban air quality, and bottom-up calculations report emissions of a variety of functionalized compounds that remain understudied and uncertain in emissions estimates. Using a new instrumental configuration, we present online measurements of oxygenated organic compounds in a U.S. megacity over a 10-day wintertime sampling period, when biogenic sources and photochemistry were less active. Measurements were conducted at a rooftop observatory in upper Manhattan, New York City, USA using a Vocus chemical ionization time-of-flight mass spectrometer with ammonium (NH4 +) as the reagent ion operating at 1 Hz. The range of observations spanned volatile, intermediate-volatility, and semi-volatile organic compounds with targeted analyses of ~150 ions whose likely assignments included a range of functionalized compound classes such as glycols, glycol ethers, acetates, acids, alcohols, acrylates, esters, ethanolamines, and ketones that are found in various consumer, commercial, and industrial products. Their concentrations varied as a function of wind direction with enhancements over the highly-populated areas of the Bronx, Manhattan, and parts of New Jersey, and included abundant concentrations of acetates, acrylates, ethylene glycol, and other commonly-used oxygenated compounds. The results provide top-down constraints on wintertime emissions of these oxygenated/functionalized compounds with ratios to common anthropogenic marker compounds, and comparisons of their relative abundances to two regionally-resolved emissions inventories used in urban air quality models.
Collapse
Affiliation(s)
- Peeyush Khare
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT-06511 USA
| | | | - Jo Ellen Machesky
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT-06511 USA
| | - Tori Hass-Mitchell
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT-06511 USA
| | - Cong Cao
- School of Marine and Atmospheric Science, Stony Brook University, Stony Brook NY-11794 USA
| | - Junqi Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT-06511 USA
| | | | | | - Sonja Malek
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT-06511 USA
| | - Will Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT-06511 USA
| | - Karl Seltzer
- Office of Air and Radiation, Environmental Protection Agency, Research Triangle Park, NC-27711 USA
| | - Havala O.T. Pye
- Office of Research and Development, Environmental Protection Agency, Research Triangle Park, NC-27711 USA
| | - Roisin Commane
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, New York, NY-10027 USA
| | - Brian C. McDonald
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder CO- USA
| | - Ricardo Toledo-Crow
- Advanced Science Research Center, City University of New York, New York, NY-10031 USA
| | - John E. Mak
- School of Marine and Atmospheric Science, Stony Brook University, Stony Brook NY-11794 USA
| | - Drew R. Gentner
- Department of Chemical and Environmental Engineering, Yale University, New Haven CT-06511 USA
- School of the Environment, Yale University, New Haven CT-06511 USA
| |
Collapse
|