1
|
Wang J, Qu L, Osterholz H, Qi Y, Zeng X, Bai E, Wang C. Effects of DOM Chemodiversity on Microbial Diversity in Forest Soils on a Continental Scale. GLOBAL CHANGE BIOLOGY 2025; 31:e70131. [PMID: 40084578 DOI: 10.1111/gcb.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Soil dissolved organic matter (DOM) is a critical reservoir of carbon and nutrients in forest ecosystems, playing a central role in carbon cycling and microbial community dynamics. However, the influence of DOM molecular-level diversity (chemodiversity) on microbial community diversity and spatial distribution remains poorly understood. In this study, we used Fourier transform ion cyclotron resonance mass spectrometry and high-throughput sequencing to analyze soil DOM and microbial diversity along a ~4,000 km forest transect in China. We found that soil DOM chemodiversity varies significantly across sites, initially increasing and then decreasing with latitude. Additionally, we observed that the biogeographic distribution of DOM components has differential effects on bacterial and fungal diversity: lipid-like compounds are strongly associated with bacterial diversity, while aromatic-, carbohydrate-, and lipid-like compounds primarily influence fungal diversity. Linear models and structural equation modeling both reveal that DOM acts as a key intermediary, mediating the effects of temperature and soil properties on microbial spatial distribution. Our findings emphasize the importance of DOM molecular characteristics in shaping microbial community structure and functioning, providing new insights into how environmental factors influence microbial ecosystems and soil carbon cycles in forest ecosystems.
Collapse
Affiliation(s)
- Jian Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Lingrui Qu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Helena Osterholz
- Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Xiangfeng Zeng
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Chao Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Kumar A, Sharma S, Dindhoria K, Thakur A, Kumar R. Insight into physico-chemical properties and microbial community structure of biogas slurry from household biogas plants of sub-Himalaya for its implications in improved biogas production. Int Microbiol 2025; 28:187-200. [PMID: 38760649 DOI: 10.1007/s10123-024-00530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Numerous metagenomics studies, conducted in both full-scale anaerobic digesters and household biogas plants, have shed light on the composition and activity of microbial flora essential for optimizing the performance of biogas reactors, underscoring the significance of microbial community composition in biogas plant efficiency. Although the efficiency of household biogas plants in the sub-Himalayan region has been reported, there is no literature evidence on the microbial community structure of such household biogas plants in the sub-Himalayan region. The current study evaluated the physico-chemical properties and bacterial community structure from the slurry samples of household biogas plants prevalent in the sub-Himalayan region. The slurry samples were observed to be rich in nutrients; however, their carbon and nitrogen contents were higher than the recommended standard values of liquid-fermented organic manure. The species richness and diversity indices (Chao1, Shannon, and Simpson) of household biogas plants were quite similar to the advanced biogas reactors operating at mesophilic conditions. 16S rRNA gene amplicon sequencing reveals microbial diversity, showing a higher abundance of Firmicutes (70.9%) and Euryarchaeota (9.52%) in advanced biogas reactors compared to household biogas plants. Microbial analysis shows a lack of beneficial microbes for anaerobic digestion, which might be the reason for inefficient biogas production in household biogas plants of the sub-Himalayan region. The lack of efficient bacterial biomass may also be attributed to the digester design, feedstock, and ambient temperatures. This study emphasized the establishment of efficient microbial consortia for enhanced degradation rates that may increase the methane yield in biogas plants.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonia Sharma
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Kiran Dindhoria
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aman Thakur
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
3
|
Mitraka GC, Kontogiannopoulos KN, Zouboulis AI, Kougias PG. Evaluation of the optimal sewage sludge pre-treatment technology through continuous reactor operation: Process performance and microbial community insights. WATER RESEARCH 2024; 257:121662. [PMID: 38678834 DOI: 10.1016/j.watres.2024.121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
This study investigated the impact of two low-temperature thermal pre-treatments on continuous anaerobic reactors' performance, sequentially fed with sludge of different total solids content (∼3 % and ∼6 %) and subjected to progressively increasing Organic Loading Rates (OLR) from 1.0 to 2.5 g volatile solids/(LReactor⋅day). Assessing pre-treatments' influence on influent sludge characteristics revealed enhanced organic matter hydrolysis, facilitating sludge solubilization and methanogenesis; volatile fatty acids concentration also increased, particularly in pre-treated sludge of ∼6 % total solids, indicating improved heating efficiency under increased solids content. The reactor fed with sludge pre-treated at 45 °C for 48 h and 55 °C for an extra 48 h exhibited the highest methane yield under all applied OLRs, peaking at 240 ± 3.0 mL/g volatile solids at the OLR of 2.5 g volatile solids/(LReactor⋅day). 16S rRNA gene sequencing demonstrated differences in the reactors' microbiomes as evidence of sludge thickening and the different pre-treatments applied, which promoted the release of organic matter in diverse concentrations and compositions. Finally, the microbial analysis revealed that specific foam-related genera increased in abundance in the foam layer of reactors' effluent bottles, dictating their association with the sludge foaming incidents that occurred inside the reactors during their operation at 2.0 g volatile solids/(LReactor⋅day).
Collapse
Affiliation(s)
- Georgia-Christina Mitraka
- Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece; Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi, P.O. Box 60458, Thessaloniki GR-57001, Greece
| | - Konstantinos N Kontogiannopoulos
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi, P.O. Box 60458, Thessaloniki GR-57001, Greece
| | - Anastasios I Zouboulis
- Laboratory of Chemical & Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Panagiotis G Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi, P.O. Box 60458, Thessaloniki GR-57001, Greece.
| |
Collapse
|
4
|
Hassa J, Tubbesing TJ, Maus I, Heyer R, Benndorf D, Effenberger M, Henke C, Osterholz B, Beckstette M, Pühler A, Sczyrba A, Schlüter A. Uncovering Microbiome Adaptations in a Full-Scale Biogas Plant: Insights from MAG-Centric Metagenomics and Metaproteomics. Microorganisms 2023; 11:2412. [PMID: 37894070 PMCID: PMC10608942 DOI: 10.3390/microorganisms11102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The current focus on renewable energy in global policy highlights the importance of methane production from biomass through anaerobic digestion (AD). To improve biomass digestion while ensuring overall process stability, microbiome-based management strategies become more important. In this study, metagenomes and metaproteomes were used for metagenomically assembled genome (MAG)-centric analyses to investigate a full-scale biogas plant consisting of three differentially operated digesters. Microbial communities were analyzed regarding their taxonomic composition, functional potential, as well as functions expressed on the proteome level. Different abundances of genes and enzymes related to the biogas process could be mostly attributed to different process parameters. Individual MAGs exhibiting different abundances in the digesters were studied in detail, and their roles in the hydrolysis, acidogenesis and acetogenesis steps of anaerobic digestion could be assigned. Methanoculleus thermohydrogenotrophicum was an active hydrogenotrophic methanogen in all three digesters, whereas Methanothermobacter wolfeii was more prevalent at higher process temperatures. Further analysis focused on MAGs, which were abundant in all digesters, indicating their potential to ensure biogas process stability. The most prevalent MAG belonged to the class Limnochordia; this MAG was ubiquitous in all three digesters and exhibited activity in numerous pathways related to different steps of AD.
Collapse
Affiliation(s)
- Julia Hassa
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Tom Jonas Tubbesing
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Irena Maus
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Robert Heyer
- Multidimensional Omics Data Analyses Group, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, Dortmund 44139, Germany
- Multidimensional Omics Data Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Dirk Benndorf
- Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, Postfach 1458, 06366 Köthen, Germany
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Mathias Effenberger
- Bavarian State Research Center for Agriculture, Institute for Agricultural Engineering and Animal Husbandry, Vöttinger Straße 36, 85354 Freising, Germany
| | - Christian Henke
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Benedikt Osterholz
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Michael Beckstette
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| | - Alexander Sczyrba
- Computational Metagenomics Group, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (T.J.T.)
| | - Andreas Schlüter
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany; (J.H.)
| |
Collapse
|
5
|
Gaspari M, Alvarado-Morales M, Tsapekos P, Angelidaki I, Kougias P. Simulating the performance of biogas reactors co-digesting ammonia and/or fatty acid rich substrates. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Zhang N, Wu C, Zhang J, Han S, Peng Y, Song X. Impacts of lipids on the performance of anaerobic membrane bioreactors for food wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Brojanigo S, Alvarado-Morales M, Basaglia M, Casella S, Favaro L, Angelidaki I. Innovative co-production of polyhydroxyalkanoates and methane from broken rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153931. [PMID: 35183640 DOI: 10.1016/j.scitotenv.2022.153931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Broken rice, a low-cost starchy residue of the rice industry, can be an interesting substrate to reduce the polyhydroxyalkanoates (PHAs) production cost. However, since the most common PHAs-producing strains lack amylases, this waste must be firstly hydrolysed by additional commercial enzymes. In this work, the acidogenesis phase of the anaerobic digestion was exploited as efficient hydrolysis step to convert broken rice into volatile fatty acids (VFAs) to be used as PHAs carbon source by Cupriavidus necator DSM 545, one of the most promising PHAs-producing microbes. Broken rice, both non-hydrolysed and enzymatically hydrolysed, was processed in two continuous stirred tank reactors, at hydraulic retention times (HRT) of 5, 4 and, 3 days, to produce VFAs. The highest VFAs levels were obtained from non-hydrolysed broken rice which was efficiently exploited for PHAs accumulation by C. necator DSM 545. PHAs contents were higher after 96 h of incubation and, noteworthy, reached the highest value of 0.95 g/L in the case of 4 days HRT without any chemicals supplementation, except vitamins. Moreover, in view of a biorefinery approach, the residual solid fraction was used for methane production resulting in promising CH4 levels. Methane yields were very promising again for 4 days HRT. As such, this HRT resulted to be the most suitable to obtain effluents with high promise in terms of both PHAs accumulation and CH4 production. In addition, these results demonstrate that broken rice could be efficiently processed into two valuable products without any costly enzymatic pre-treatment and pave the way for future biorefining approaches where this by-product can be converted in a cluster of added-value compounds. Techno-economical estimations are in progress to assess the feasibility of the entire process, in view of supporting the low-cost conversion of organic waste into valuable products.
Collapse
Affiliation(s)
- Silvia Brojanigo
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Merlin Alvarado-Morales
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark.
| | - Marina Basaglia
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Sergio Casella
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark.
| |
Collapse
|
8
|
Palù M, Peprah M, Tsapekos P, Kougias P, Campanaro S, Angelidaki I, Treu L. In-situ biogas upgrading assisted by bioaugmentation with hydrogenotrophic methanogens during mesophilic and thermophilic co-digestion. BIORESOURCE TECHNOLOGY 2022; 348:126754. [PMID: 35077815 DOI: 10.1016/j.biortech.2022.126754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
In this study, the effects of bioaugmentation of typically dominant hydrogenotrophic methanogens to CSTR co-digesting cheese whey and manure, under in-situ biomethanation operations were investigated. Reactors working at mesophilic (37 °C) and thermophilic (55 °C) conditions were independently treated and examined in terms of microbial composition and process dynamics. Addition of Methanoculleus bourgensis in the mesophilic reactor led to a stable biomethanation, and an improved microbial metabolism, resulting in 11% increase in CH4 production rate. 16S rRNA and biochemical analyses revealed an enrichment in syntrophic and acidogenic species abundance. Moreover, nearly total volatile fatty acids conversion was observed. Differently, Methanothermobacter thermautotrophicus addition in the thermophilic reactor did not promote biogas upgrading performance due to incomplete H2 conversion and inefficient community adaptation to H2 excess, ultimately favoring acetoclastic methanogenesis. Bioaugmentation constitutes a viable tool to strengthen in-situ upgrading processes and paves the way to the development of more sophisticated and robust microbial inoculants.
Collapse
Affiliation(s)
- Matteo Palù
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35121, Italy
| | - Maria Peprah
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Panagiotis Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation DIMITRA, Thermi, Thessaloniki 57001, Greece
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35121, Italy; CRIBI Biotechnology Center, University of Padova, Padova 35131, Italy.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35121, Italy
| |
Collapse
|
9
|
Willenbücher K, Wibberg D, Huang L, Conrady M, Ramm P, Gätcke J, Busche T, Brandt C, Szewzyk U, Schlüter A, Barrero Canosa J, Maus I. Phage Genome Diversity in a Biogas-Producing Microbiome Analyzed by Illumina and Nanopore GridION Sequencing. Microorganisms 2022; 10:368. [PMID: 35208823 PMCID: PMC8879888 DOI: 10.3390/microorganisms10020368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
The microbial biogas network is complex and intertwined, and therefore relatively stable in its overall functionality. However, if key functional groups of microorganisms are affected by biotic or abiotic factors, the entire efficacy may be impaired. Bacteriophages are hypothesized to alter the steering process of the microbial network. In this study, an enriched fraction of virus-like particles was extracted from a mesophilic biogas reactor and sequenced on the Illumina MiSeq and Nanopore GridION sequencing platforms. Metagenome data analysis resulted in identifying 375 metagenome-assembled viral genomes (MAVGs). Two-thirds of the classified sequences were only assigned to the superkingdom Viruses and the remaining third to the family Siphoviridae, followed by Myoviridae, Podoviridae, Tectiviridae, and Inoviridae. The metavirome showed a close relationship to the phage genomes that infect members of the classes Clostridia and Bacilli. Using publicly available biogas metagenomic data, a fragment recruitment approach showed the widespread distribution of the MAVGs studied in other biogas microbiomes. In particular, phage sequences from mesophilic microbiomes were highly similar to the phage sequences of this study. Accordingly, the virus particle enrichment approach and metavirome sequencing provided additional genome sequence information for novel virome members, thus expanding the current knowledge of viral genetic diversity in biogas reactors.
Collapse
Affiliation(s)
- Katharina Willenbücher
- System Microbiology, Department Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany;
- Environmental Microbiology, Faculty of Process Sciences, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; (U.S.); (J.B.C.)
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| | - Liren Huang
- Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany;
| | - Marius Conrady
- Institute of Agricultural and Urban Ecological Projects, Berlin Humboldt University (IASP), Philippstr. 13, 10115 Berlin, Germany; (M.C.); (P.R.)
| | - Patrice Ramm
- Institute of Agricultural and Urban Ecological Projects, Berlin Humboldt University (IASP), Philippstr. 13, 10115 Berlin, Germany; (M.C.); (P.R.)
| | - Julia Gätcke
- Biophysics of Photosynthesis, Institute for Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany;
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| | - Christian Brandt
- Institute for Infection Medicine and Hospital Hygiene, University Hospital Jena, Kastanienstraße 1, 07747 Jena, Germany;
| | - Ulrich Szewzyk
- Environmental Microbiology, Faculty of Process Sciences, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; (U.S.); (J.B.C.)
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| | - Jimena Barrero Canosa
- Environmental Microbiology, Faculty of Process Sciences, Institute of Environmental Technology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; (U.S.); (J.B.C.)
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Genome Research of Industrial Microorganisms, Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, Germany; (D.W.); (T.B.); (A.S.)
| |
Collapse
|
10
|
Tsigkou K, Terpou A, Treu L, Kougias PG, Kornaros M. Thermophilic anaerobic digestion of olive mill wastewater in an upflow packed bed reactor: Evaluation of 16S rRNA amplicon sequencing for microbial analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113853. [PMID: 34624575 DOI: 10.1016/j.jenvman.2021.113853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Olive mill wastewater, a by-product of olive oil production after the operation of three-phase decanters, was used in a thermophilic anaerobic digester targeting efficient bioconversion of its organic load into biogas. An active anaerobic inoculum originating from a mesophilic reactor, was acclimatized under thermophilic conditions and was filled into a high-rate upflow packed bed reactor. Its performance was tested towards the treatment efficacy of olive mill wastewater under thermophilic conditions reaching the minimum hydraulic retention time of 4.2 d with promising results. As analysis of the microbial communities is considered to be the key for the development of anaerobic digestion optimization techniques, the present work focused on characterizing the microbial community and its variation during the reactor's runs, via 16S rRNA amplicon sequencing. Identification of new microbial species and taxonomic groups determination is of paramount importance as these representatives determine the bioprocess outcome. The current study results may contribute to further olive mill wastewater exploitation as a potential source for efficient biogas production.
Collapse
Affiliation(s)
- Konstantina Tsigkou
- Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Antonia Terpou
- Department of Agricultural Development, Agri-food, and Natural Resources Management, School of Agricultural Development, Nutrition & Sustainability, National and Kapodistrian University of Athens, GR-34400, Psachna, Greece
| | - Laura Treu
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Panagiotis G Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation DEMETER, 57001, Thermi, Thessaloniki, Greece
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece.
| |
Collapse
|
11
|
Hashemi S, Hashemi SE, Lien KM, Lamb JJ. Molecular Microbial Community Analysis as an Analysis Tool for Optimal Biogas Production. Microorganisms 2021; 9:microorganisms9061162. [PMID: 34071282 PMCID: PMC8226781 DOI: 10.3390/microorganisms9061162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
The microbial diversity in anaerobic digestion (AD) is important because it affects process robustness. High-throughput sequencing offers high-resolution data regarding the microbial diversity and robustness of biological systems including AD; however, to understand the dynamics of microbial processes, knowing the microbial diversity is not adequate alone. Advanced meta-omic techniques have been established to determine the activity and interactions among organisms in biological processes like AD. Results of these methods can be used to identify biomarkers for AD states. This can aid a better understanding of system dynamics and be applied to producing comprehensive models for AD. The paper provides valuable knowledge regarding the possibility of integration of molecular methods in AD. Although meta-genomic methods are not suitable for on-line use due to long operating time and high costs, they provide extensive insight into the microbial phylogeny in AD. Meta-proteomics can also be explored in the demonstration projects for failure prediction. However, for these methods to be fully realised in AD, a biomarker database needs to be developed.
Collapse
Affiliation(s)
- Seyedbehnam Hashemi
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Sayed Ebrahim Hashemi
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Kristian M. Lien
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Jacob J. Lamb
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
- Department of Electronic Systems, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Correspondence:
| |
Collapse
|
12
|
Metagenomics Analysis Reveals the Microbial Communities, Antimicrobial Resistance Gene Diversity and Potential Pathogen Transmission Risk of Two Different Landfills in China. DIVERSITY 2021. [DOI: 10.3390/d13060230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
In this study, we used a metagenomic approach to analyze microbial communities, antibiotic resistance gene diversity, and human pathogenic bacterium composition in two typical landfills in China. Results showed that the phyla Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in the two landfills, and archaea and fungi were also detected. The genera Methanoculleus, Lysobacter, and Pseudomonas were predominantly present in all samples. sul2, sul1, tetX, and adeF were the four most abundant antibiotic resistance genes. Sixty-nine bacterial pathogens were identified from the two landfills, with Klebsiella pneumoniae, Bordetella pertussis, Pseudomonas aeruginosa, and Bacillus cereus as the major pathogenic microorganisms, indicating the existence of potential environmental risk in landfills. In addition, KEGG pathway analysis indicated the presence of antibiotic resistance genes typically associated with human antibiotic resistance bacterial strains. These results provide insights into the risk of pathogens in landfills, which is important for controlling the potential secondary transmission of pathogens and reducing workers’ health risk during landfill excavation.
Collapse
|