1
|
Moazami TN, Svendsen KVH, Buhagen M, Jørgensen RB. Comparing PM 2.5, respirable dust, and total dust fractions using real-time and gravimetric samples in an exposure chamber study. Heliyon 2023; 9:e16127. [PMID: 37274722 PMCID: PMC10238574 DOI: 10.1016/j.heliyon.2023.e16127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 06/06/2023] Open
Abstract
Using an exposure chamber, we investigate the precision of the DustTrak DRX monitor by comparing its results to those obtained from taking traditional gravimetric samples of two stone minerals commonly used in asphalt and lactose powder. We also discuss the possibility of using real-time monitors such as DustTrak DRX for occupational exposure monitoring purposes. The results are based on 19 days of experiment, each day with measurements collected over 4 h. Compared to the gravimetric samples, the DustTrak DRX overestimated the PM2.5 and respirable dust concentrations, while it underestimated the total dust concentration by a factor of nearly two. However, the ratios, being done for more than one material, between the DustTrak DRX and the gravimetric sample readings varied daily and across the different exposure materials. Real-time sensors have the potential to excel at identifying exposure sources, evaluating the measured control efficiency, visualizing variations in exposure to motivate workers, and contributing to the identification of measures to be implemented to reduce exposure. For total dust, a correction factor of at least two should be used to bring its readings up to those for the corresponding gravimetric samples. Also, if the DustTrak DRX is used in the initial profiling of occupational exposure, the exposure could be considered acceptable if the readings are well below the occupational exposure limit (OELs) after correction. If the DustTrak DRX readings, after correction, is close to, or above, the accepted exposure concentrations, more thorough approaches would be required to validate the exposure.
Collapse
Affiliation(s)
- Therese Nitter Moazami
- Department of Industrial Economics and Technology Management (IØT), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Kristin v Hirsch Svendsen
- Department of Industrial Economics and Technology Management (IØT), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Morten Buhagen
- Department of Occupational Medicine, St. Olav's University Hospital, 7006, Trondheim, Norway
| | - Rikke Bramming Jørgensen
- Department of Industrial Economics and Technology Management (IØT), Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| |
Collapse
|
2
|
Skuland T, Grytting VS, Låg M, Jørgensen RB, Snilsberg B, Leseman DLAC, Kubátová A, Emond J, Cassee FR, Holme JA, Øvrevik J, Refsnes M. Road tunnel-derived coarse, fine and ultrafine particulate matter: physical and chemical characterization and pro-inflammatory responses in human bronchial epithelial cells. Part Fibre Toxicol 2022; 19:45. [PMID: 35787286 PMCID: PMC9251916 DOI: 10.1186/s12989-022-00488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traffic particulate matter (PM) comprises a mixture of particles from fuel combustion and wear of road pavement, tires and brakes. In countries with low winter temperatures the relative contribution of mineral-rich PM from road abrasion may be especially high due to use of studded tires during winter season. The aim of the present study was to sample and characterize size-fractioned PM from two road tunnels paved with different stone materials in the asphalt, and to compare the pro-inflammatory potential of these fractions in human bronchial epithelial cells (HBEC3-KT) in relation to physicochemical characteristics. METHODS The road tunnel PM was collected with a vacuum pump and a high-volume cascade impactor sampler. PM was sampled during winter, both during humid and dry road surface conditions, and before and after cleaning the tunnels. Samples were analysed for hydrodynamic size distribution, content of elemental carbon (EC), organic carbon (OC) and endotoxin, and the capacity for acellular generation of reactive oxygen species. Cytotoxicity and pro-inflammatory responses were assessed in HBEC3-KT cells after exposure to coarse (2.5-10 μm), fine (0.18-2.5 μm) and ultrafine PM (≤ 0.18 μm), as well as particles from the respective stone materials used in the pavement. RESULTS The pro-inflammatory potency of the PM samples varied between road tunnels and size fractions, but showed more marked responses than for the stone materials used in asphalt of the respective tunnels. In particular, fine samples showed significant increases as low as 25 µg/mL (2.6 µg/cm2) and were more potent than coarse samples, while ultrafine samples showed more variable responses between tunnels, sampling conditions and endpoints. The most marked responses were observed for fine PM sampled during humid road surface conditions. Linear correlation analysis showed that particle-induced cytokine responses were correlated to OC levels, while no correlations were observed for other PM characteristics. CONCLUSIONS The pro-inflammatory potential of fine road tunnel PM sampled during winter season was high compared to coarse PM. The differences between the PM-induced cytokine responses were not related to stone materials in the asphalt. However, the ratio of OC to total PM mass was associated with the pro-inflammatory potential.
Collapse
Affiliation(s)
- Tonje Skuland
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway.
| | - Vegard Sæter Grytting
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Marit Låg
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Rikke Bræmming Jørgensen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | | | - Daan L A C Leseman
- National Institute for Public Health and the Environment - RIVM, PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Jessica Emond
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Flemming R Cassee
- National Institute for Public Health and the Environment - RIVM, PO Box 1, 3720 BA, Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jørn A Holme
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Johan Øvrevik
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway.,Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066, 0316, Blindern, Oslo, Norway
| | - Magne Refsnes
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| |
Collapse
|
3
|
Patra A, Phuleria HC. Inequalities in occupational exposures among people using popular commute modes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118797. [PMID: 35016987 DOI: 10.1016/j.envpol.2022.118797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Several recent studies have looked into the differences in air qualities inside popular commute modes. The impact of daily commuting patterns and work-related trips on inhalation doses, however, are not investigated. The purpose of this study is to quantify the variation in air pollutants within popular commute modes in Mumbai, India, and to estimate the variation in exposure as a result of occupational or work-related trips across different sub-groups. Real-time pollutants, both gaseous and particulate matters (PM), were measured on a pre-defined route during rush and non-rush hours on buses, cars, auto-rickshaws, sub-urban trains, and motorbikes through several trips (N = 98). Household surveys were conducted to estimate the exposures of different occupational subgroups (cab-driver, auto-rickshaw drivers, delivery persons) and people commuting to their offices daily. Participants (N = 800) from various socioeconomic backgrounds in the city were asked about their job categories, work-activity patterns, and work-related commute trips. Mass concentrations of particles in different size ranges (PM1, PM2.5, and PM10) were substantially higher (p < 0.05) inside auto-rickshaws (44.6 μg/m3, 84.7 μg/m3, and 138.3 μg/m3) compared to other modes. Inside cars, gaseous pollutants such as carbon monoxide (CO) and total volatile organic compounds (TVOC) were significantly higher (p < 0.05). Although both gaseous and particulate concentrations were lower (p < 0.05) inside buses, bus-commuters were found to be highly exposed to the pollutants due to the extended trip time (∼1.2 times longer than other modes) and driving conditions. Office commuters inhale a large fraction of their daily doses (25-30%) during their work-related travel. Occupational sub-groups, on the other hand, inhale ∼90% of the pollutants during their work. In a day, an auto-rickshaw driver inhales 10-15% more (p < 0.05) pollutants than cab driver or delivery personnel. Therefore, this study highlights the inequalities in occupational exposure as a combined effect of in-cabin air qualities and commute patterns due to occupational obligations.
Collapse
Affiliation(s)
- Arpan Patra
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Harish C Phuleria
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India; Interdisciplinary Programme (IDP) in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|