1
|
Ribeiro O, Gaivão I, Carrola JS. Alkaline Comet Assay to Assess Genotoxicity in Zebrafish Larvae. Methods Mol Biol 2024; 2753:503-514. [PMID: 38285363 DOI: 10.1007/978-1-0716-3625-1_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The zebrafish (Danio rerio) is a model organism widely used in several research fields due to its characteristics and numerous advantages, such as optical embryo transparency, fully sequenced genome, orthologous genes to humans, small size, high reproductive rate, easy gene editing and relatively low costs. Thus, a number of protocols have been developed that allow the use of this vertebrate model for toxic effect evaluation at various biological levels, including genotoxicity, using the comet assay technique.The comet assay or single-cell gel electrophoresis is a popular and sensitive method to study DNA damage in cells, which is described in this chapter. Briefly, cells suspended in agarose on a microscope slide are lysed, denatured, electrophoresed, neutralized, and stained to study the migration of DNA strand breaks. As a result, cells with increased DNA damage present a high fluorescence intensity and an increase of comet tail length. For the visual score, comets are classified according to the head integrity, tail intensity, and tail length into five classes, namely, class 0 until class 4 (comets with high damage and with almost all the DNA in the tail). These data are used to calculate the Genetic Damage Index (GDI) expressed as Arbitrary Units (AU).
Collapse
Affiliation(s)
- Ondina Ribeiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), Vila Real, Portugal
| | - Isabel Gaivão
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - João Soares Carrola
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal.
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), Vila Real, Portugal.
| |
Collapse
|
2
|
Montalvão MF, Gomes AR, Guimarães ATB, Rodrigues ASDL, Matos LPD, Mendonça JDS, da Luz TM, Matos SGDS, Rahman MS, Ragavendran C, Senthil-Nathan S, Guru A, Rakib MRJ, Mubarak NM, Rahman MM, Rocha TL, Islam ARMT, Malafaia G. Toxicity of carbon nanofibers in earthworms (Lumbricus terrestris) naturally infected with Monocystis sp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167712. [PMID: 37832683 DOI: 10.1016/j.scitotenv.2023.167712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Although the ecotoxicity of carbon-based nanomaterials (CBNs) is known, the potential effect of carbon nanofibers (CNFs) on edaphic organisms has been insufficiently explored. Thus, we aimed at the ecotoxicity of CNFs (at 10 and 100 mg/kg) in Lumbricus terrestris earthworms naturally infected with Monocystis sp. After 28 days of exposure, treatments did not affect the survival rate. However, we observed a significant loss of body biomass, and Monocystis sp. infection in seminal vesicles was potentiated by exposure to CNFs. Earthworms exposed to CNFs showed a redox imbalance in the seminal vesicle, muscle, and intestine and an alteration in nitric oxide production in these organs. In muscles, we also noticed a significant reduction in AChE activity in earthworms exposed to CNFs. The histopathological analyses revealed the treatments' significant effect on the structures of the different evaluated tissues. Although we did not notice a concentration-response for several of the biomarkers, when taken together and after the application of Integrated Biomarker Response (IBR) and principal component analysis (PCA), we noticed that the response of earthworms to CNFs at 100 mg/kg showed a more significant deviation from the unexposed group. This was mainly determined by inhibiting antioxidant activity in the seminal vesicle, biochemical biomarkers assessed in muscle and intestine, and histomorphometric muscle biomarkers from earthworms exposed to CNFs at 100 mg/kg. Thus, we demonstrate that CNFs increase the parasite load of Monocystis sp. of adult L. terrestris earthworms and induce biochemical and histopathological changes, especially at 100 mg/kg. Our results point to the additional impact these nanomaterials can have on the health of earthworms, signaling the need for greater attention to their disposal and ecotoxicological effects on soil organisms.
Collapse
Affiliation(s)
- Mateus Flores Montalvão
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Alex Rodrigues Gomes
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Abraão Tiago Batista Guimarães
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Letícia Paiva de Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Juliana Dos Santos Mendonça
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Thiarlen Marinho da Luz
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Stênio Gonçalves da Silva Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - M Safiur Rahman
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Chinnasamy Ragavendran
- Saveetha Dental College and Hospitals (SIMATS), Saveetha University Chennai, Tamil Nadu, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India.
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India.
| | | | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| | | | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
3
|
Montalvão MF, Chagas TQ, Rodrigues ASDL, Guimarães ATB, Malafaia G. Long-term exposure of zebrafish juveniles to carbon nanofibers at predicted environmentally relevant concentrations: Outspreading warns about ecotoxicological risks to freshwater fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163153. [PMID: 37003323 DOI: 10.1016/j.scitotenv.2023.163153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
Although carbon-based nanomaterials (CNMs) toxicity has already been demonstrated in some animal models, little is known about the impact of carbon nanofibers (CNFs) on aquatic vertebrates. Thus, we aimed to evaluate the possible effects of long-term exposure of zebrafish (Danio rerio) juveniles (90 days) to CNFs in predicted environmentally relevant concentrations (10 ng/L and 10 μg/L). Our data revealed that exposure to CNFs did not affect the growth and development of the animals, in addition to not having induced locomotor alterations or anxiety-like behavior. On the other hand, we observed that zebrafish exposed to CNFs showed a response deficit to the vibratory stimulus test, alteration in the density of neuromasts recorded in the final ventral region, as well as an increase in thiobarbituric acid reactive substances levels and a reduction in total antioxidant activity, nitric oxide, and acetylcholinesterase activity in the brain. Such data were directly associated with a higher concentration of total organic carbon in the brain, which suggests the bioaccumulation of CNFs. Furthermore, exposure to CNFs induced a picture suggestive of genomic instability, inferred by the increased frequency of nuclear abnormalities and DNA damage in circulating erythrocytes. Although the individual analyses of the biomarkers did not point to a concentration-dependent effect, the principal component analysis (PCA) and the Integrated Biomarker Response Index (IBRv2) indicate a more prominent effect induced by the higher CNFs concentration (10 μg/L). Therefore, our study confirms the impact of CNFs in the studied model (D. rerio) and sheds light on the ecotoxicological risks of these nanomaterials to freshwater fish. Based on the ecotoxicological screening provided by our study, new horizons are opened for investigations into the mechanisms of action of CNFs, which will help understand the magnitude of the impact of these materials on aquatic biota.
Collapse
Affiliation(s)
- Mateus Flores Montalvão
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Thales Quintão Chagas
- State Secretariat of Environmental Development (SEDAM), Sedam's Conservation Units Coordination (CUC), Conservation Unit Management Division, Porto Velho, RO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
4
|
Flasz B, Dziewięcka M, Ajay AK, Tarnawska M, Babczyńska A, Kędziorski A, Napora-Rutkowski Ł, Ziętara P, Świerczek E, Augustyniak M. Age- and Lifespan-Dependent Differences in GO Caused DNA Damage in Acheta domesticus. Int J Mol Sci 2022; 24:ijms24010290. [PMID: 36613733 PMCID: PMC9820743 DOI: 10.3390/ijms24010290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The rising applicability of graphene oxide (GO) should be preceded by detailed tests confirming its safety and lack of toxicity. Sensitivity to GO of immature, or with different survival strategy, individuals has not been studied so far. Therefore, in the present research, we focused on the GO genotoxic effects, examining selected parameters of DNA damage (total DNA damage, double-strand breaks-DSB, 8-hydroxy-2'-deoxyguanosine-8-OHdG, abasic site-AP sites), DNA damage response parameters, and global methylation in the model organism Acheta domesticus. Special attention was paid to various life stages and lifespans, using wild (H), and selected for longevity (D) strains. DNA damage was significantly affected by stage and/or strain and GO exposure. Larvae and young imago were generally more sensitive than adults, revealing more severe DNA damage. Especially in the earlier life stages, the D strain reacted more intensely/inversely than the H strain. In contrast, DNA damage response parameters were not significantly related to stage and/or strain and GO exposure. Stage-dependent DNA damage, especially DSB and 8-OHdG, with the simultaneous lack or subtle activation of DNA damage response parameters, may result from the general life strategy of insects. Predominantly fast-living and fast-breeding organisms can minimize energy-demanding repair mechanisms.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Amrendra K. Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Chybie, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
- Correspondence: ; Tel.: +48-32-359-1235
| |
Collapse
|
5
|
Nanofiber Carriers of Therapeutic Load: Current Trends. Int J Mol Sci 2022; 23:ijms23158581. [PMID: 35955712 PMCID: PMC9368923 DOI: 10.3390/ijms23158581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The fast advancement in nanotechnology has prompted the improvement of numerous methods for the creation of various nanoscale composites of which nanofibers have gotten extensive consideration. Nanofibers are polymeric/composite fibers which have a nanoscale diameter. They vary in porous structure and have an extensive area. Material choice is of crucial importance for the assembly of nanofibers and their function as efficient drug and biomedicine carriers. A broad scope of active pharmaceutical ingredients can be incorporated within the nanofibers or bound to their surface. The ability to deliver small molecular drugs such as antibiotics or anticancer medications, proteins, peptides, cells, DNA and RNAs has led to the biomedical application in disease therapy and tissue engineering. Although nanofibers have shown incredible potential for drug and biomedicine applications, there are still difficulties which should be resolved before they can be utilized in clinical practice. This review intends to give an outline of the recent advances in nanofibers, contemplating the preparation methods, the therapeutic loading and release and the various therapeutic applications.
Collapse
|
6
|
Nascimento ÍF, Guimarães ATB, Ribeiro F, Rodrigues ASDL, Estrela FN, Luz TMD, Malafaia G. Polyethylene glycol acute and sub-lethal toxicity in neotropical Physalaemus cuvieri tadpoles (Anura, Leptodactylidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117054. [PMID: 33848902 DOI: 10.1016/j.envpol.2021.117054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Although many polymers are known by their toxicity, we know nothing about the impact of polyethylene glycol (PEG) on anurofauna. Its presence in different products and disposal in aquatic environments turn assessments about its impact on amphibians an urgent matter. Accordingly, we tested the hypothesis that short-time exposure (72 h) of tadpoles belonging to the species Physalaemus cuvieri (Anura, Leptodactylidae) to PEG induces oxidative stress and neurotoxicity on them. We observed that polymer uptake in P. cuvieri occurred after exposure to 5 and 10 mg/L of PEG without inducing changes in their nitrite levels neither at the levels of substances reactive to thiobarbituric acid. However, hydrogen peroxide and reactive oxygen species production was higher in animals exposed to PEG, whose catalase and superoxide dismutase levels were not enough to counterbalance the production of these reactive species. Therefore, this finding suggests physiological changes altering REDOX homeostasis into oxidative stress. In addition, the increased activity of acetylcholinesterase and butyrylcholinesterase, and reduction in superficial neuromasts, confirmed PEG's neurotoxic potential. To the best of our knowledge, this is the first report on PEG's biological impact on a particular amphibian species. The study has broadened the understanding about ecotoxicological risks associated with water pollution by these polymers, as well as motivated further investigations on its impacts on amphibians' health and on the dynamics of their natural populations.
Collapse
Affiliation(s)
| | - Abraão Tiago Batista Guimarães
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fabianne Ribeiro
- Department of Biology & CESAM - Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | | | - Fernanda Neves Estrela
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thiarlen Marinho da Luz
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Graduate Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology and Natural Resources Conservation, Uberlândia, MG, Brazil.
| |
Collapse
|