1
|
Smječanin N, Nuhanović M, Preljević M, Sulejmanović J, Begić S. Enhanced sorbent properties by synergistic effect of biomass extract functional groups for effective uranium uptake from aqueous system. ENVIRONMENTAL RESEARCH 2024; 263:120034. [PMID: 39307223 DOI: 10.1016/j.envres.2024.120034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024]
Abstract
Adsorption for uranium removal from aqueous systems has been extensively studied, due to its many advantages. However, the great costs and complexity of many sorbent preparation methods are still restricting the progress. Hence, this research aimed to introduce a novel, simple and green method for enhancing Amberlite IR-120 properties for U(VI) removal. Adsorption process parameters were evaluated by batch method and sorbent was characterized before and after uranium adsorption by FTIR, SEM and EDS analysis. The results demonstrated that sorbent was effective for U(VI) removal at pH 5, 100 mg dose with 60 mg/L of U(VI) concentration within 40 min at higher temperatures. The removal efficiency was 87.7% and process was found feasible according to thermodynamic data. Kinetic modelling showed best correlation with pseudo-second order model (r2 = 0.999) and applied isotherms could all describe investigated process suggesting a complex mechanism of U(VI) uptake. Effect of interfering ions (Pb(II), Ni(II) and Co(II)) in a concentration of 45 and 60 mg/L decreased U(VI) removal to 45%. Additionally, AAS method confirmed that used sorbent has significant affinity towards Pb(II). Desorption study revealed successful uranium recovery in up to 3 cycles of sorption/desorption. The EDS analysis revealed the uranium presence with 4.7% and FTIR analysis revealed bands characteristic for stretching vibrations of O=U=O. Proposed mechanism involved U(VI) uptake via non-covalent interactions, inter/intra-molecular hydrogen bonding and intraparticle diffusion. Techno-economic analysis showed that with used preparation method 1 g of ASP costs 0.022 $. Hence, this study offers a novel method for sorbents properties enhancements.
Collapse
Affiliation(s)
- Narcisa Smječanin
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina; International Society of Engineering Science and Technology, United Kingdom.
| | - Mirza Nuhanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina
| | - Medina Preljević
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina; International Society of Engineering Science and Technology, United Kingdom
| | - Sabina Begić
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Sarajevo, Bosnia and Herzegovina; International Society of Engineering Science and Technology, United Kingdom
| |
Collapse
|
2
|
Cela-Dablanca R, Barreiro A, Rodríguez-López L, Arias-Estévez M, Fernández-Sanjurjo M, Álvarez-Rodríguez E, Núñez-Delgado A. Azithromycin removal using pine bark, oak ash and mussel shell. ENVIRONMENTAL RESEARCH 2024; 252:119048. [PMID: 38697595 DOI: 10.1016/j.envres.2024.119048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Adsorption is considered an interesting option for removing antibiotics from the environment because of its simple design, low cost, and potential efficiency. In this work we evaluated three by-products (pine bark, oak ash, and mussel shell) as bio-adsorbents for the antibiotic azithromycin (AZM). Furthermore, they were added at doses of 48 t ha-1 to four different soils, then comparing AZM removal for soils with and without bio-adsorbents. Batch-type experiments were used, adding AZM concentrations between 2.5 and 600 μmol L-1 to the different bio-adsorbents and soil + bio-adsorbent mixtures. Regarding the bio-adsorbents, oak ash showed the best adsorption scores (9600 μmol kg-1, meaning >80% retention), followed by pine bark (8280 μmol kg-1, 69%) and mussel shell (between 3000 and 6000 μmol kg-1, 25-50% retention). Adsorption data were adjusted to different models (Linear, Freundlich and Langmuir), showing that just mussel shell presented an acceptable fitting to the Freundlich equation, while pine bark and oak ash did not present a good adjustment to any of the three models. Regarding desorption, the values were always below the detection limit, indicating a rather irreversible adsorption of AZM onto these three by-products. Furthermore, the results showed that when the lowest concentrations of AZM were added to the not amended soils they adsorbed 100% of the antibiotic, whereas when the highest concentrations of AZM were spread, the adsorption decreased to 55%. However, when any of the three bio-adsorbents was added to the soils, AZM adsorption reached 100% for all the antibiotic concentrations used. Desorption was null in all cases for both soils with and without bio-adsorbents. These results, corresponding to an investigation carried out for the first time for the antibiotic AZM, can be seen as relevant in the search of low-cost alternative treatments to face environmental pollution caused by this emerging contaminant.
Collapse
Affiliation(s)
- Raquel Cela-Dablanca
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Barreiro
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain.
| | - Lucía Rodríguez-López
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Manuel Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - María Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Avelino Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
3
|
Hamdi S, Mosbahi M, Issaoui M, Barreiro A, Cela-Dablanca R, Brahmi J, Tlili A, Jamoussi F, J Fernández-Sanjurjo M, Núñez-Delgado A, Álvarez-Rodríguez E, Gharbi-Khelifi H. Experimental data and modeling of sulfadiazine adsorption onto raw and modified clays from Tunisia. ENVIRONMENTAL RESEARCH 2024; 248:118309. [PMID: 38301763 DOI: 10.1016/j.envres.2024.118309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
In recent years, the increasing detection of emerging pollutants (particularly antibiotics, such as sulfonamides) in agricultural soils and water bodies has raised growing concern about related environmental and health problems. In the current research, sulfadiazine (SDZ) adsorption was studied for three raw and chemically modified clays. The experiments were carried out for increasing doses of the antibiotic (0, 1, 5, 10, 20, and 40 μmol L-1) at ambient temperature and natural pH with a contact time of 24 h. The eventual fitting to Freundlich, Langmuir and Linear adsorption models, as well as residual concentrations of antibiotics after adsorption, was assessed. The results obtained showed that one of the clays (HJ1) adsorbed more SDZ (reaching 99.9 % when 40 μmol L-1 of SDZ were added) than the other clay materials, followed by the acid-activated AM clay (which reached 99.4 % for the same SDZ concentration added). The adsorption of SDZ followed a linear adsorption isotherm, suggesting that hydrophobic interactions, rather than cation exchange, played a significant role in SDZ retention. Concerning the adsorption data, the best adjustment corresponded to the Freundlich model. The highest Freundlich KF scores were obtained for the AM acid-treated and raw HJ1 clays (606.051 and 312.969 Ln μmol1-n kg-1, respectively). The Freundlich n parameter ranged between 0.047 and 1.506. Regarding desorption, the highest value corresponded to the AM clay, being generally <10 % for raw clays, <8 % for base-activated clays, and <6 % for acid-activated clays. Chemical modifications contributed to improve the adsorption capacity of the AM clay, especially when the highest concentrations of the antibiotic were added. The results of this research can be considered relevant as regard environmental and public health assessment since they estimate the feasibility of three Tunisian clays in SDZ removal from aqueous solutions.
Collapse
Affiliation(s)
- Samiha Hamdi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia; Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27 Faculty of Pharmacy of Monastir, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia.
| | - Mohamed Mosbahi
- Dpartment of Geology, GEOGLOB Research Unit, Faculty of Science and Technology of Sfax, Sokra Street 3038 Sfax, Tunisia
| | - Manel Issaoui
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia
| | - Ana Barreiro
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Raquel Cela-Dablanca
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Jihen Brahmi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia
| | - Ali Tlili
- Dpartment of Geology, GEOGLOB Research Unit, Faculty of Science and Technology of Sfax, Sokra Street 3038 Sfax, Tunisia
| | - Faker Jamoussi
- Georesources Laboratory, CERTE, Borj Cedria, Bp 273, 8020, Solimen, Tunisia
| | - María J Fernández-Sanjurjo
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Hakima Gharbi-Khelifi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27 Faculty of Pharmacy of Monastir, University of Monastir, Avenue Avicenne, 5019, Monastir, Tunisia
| |
Collapse
|
4
|
Chen X, Cai S, Zhang N, Yang J, Peng T, Yang F. Biosorption of U(VI) and mechanisms by live and dead cells of Sphingopyxis sp. YF1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109469-109480. [PMID: 37924175 DOI: 10.1007/s11356-023-29881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/10/2023] [Indexed: 11/06/2023]
Abstract
Heavy metal pollution seriously threatens the environment and human health. The biosorption of heavy metals has attracted worldwide attention due to its cost-effectiveness and environmental friendliness. It is significant to develop biosorbents with excellent adsorption performance. Sphingopyxis is widely used in the removal of various organic pollutants, but its potential application in heavy metal adsorption has been largely overlooked. This study investigates the biosorption of U(VI) onto live and dead cells of a Sphingopyxis strain YF1. The effects of pH, contact time and initial ion concentration on U(VI) adsorption investigated, and kinetic and isothermal models were used to fit the adsorption results. The results show that under pH 3-6, the adsorption of U(VI) by YF1 live cells increased with the increase of the pH. Both the pseudo-first order and pseudo-second order models can satisfactorily interpret the adsorption by live and dead cells. Three isothermal adsorption models (Langmuir, Freundlich, and Sips) were used to fit the adsorption process. The adsorption of uranium by live and dead cells was best fitted by the Sips model. The maximal adsorption capacities of U(VI) by live and dead cells were 140.7 mg g-1 and 205.7 mg g-1, respectively. The mechanisms of U(VI) adsorption by Sphingopyxis sp. YF1 were revealed. Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) show that U(VI) was deposited on the surface of the bacterial cells. Fourier-transform infrared spectroscopy (FTIR) shows that amine, hydroxyl, alkyl, amide I, amide II, phosphate, carboxylates and carboxylic acids were the major functional groups that are involved in U(VI) adsorption by live and dead cells. X-ray photoelectron spectroscopy (XPS) suggests that the main functional groups of live cells involved in adsorption were O = C-O, C-OH/C-O-C and N-C = O. This study indicates Sphingopyxis sp. YF1 is a high-efficiency U(VI)-adsorbing strain, promising to remove U(VI) from aquatic environment.
Collapse
Affiliation(s)
- Xinxin Chen
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Siheng Cai
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Nan Zhang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Jieqiu Yang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China.
| |
Collapse
|
5
|
Lin H, Yang D, Zhang C, Liu W, Zhang L, Dong Y. Selective removal behavior of lead and cadmium from calcium-rich solution by MgO loaded soybean straw biochars and mechanism analysis. CHEMOSPHERE 2023; 319:138010. [PMID: 36731666 DOI: 10.1016/j.chemosphere.2023.138010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Modified biochars has great potential for removing heavy metals from aquatic environments, but the removal of heavy metals by biochars is usually significantly affected by the co-presence of the macro amount of metal ions, such as Ca. Enhancing the ion exchange capacity of biochar by increasing its alkali metal content is a very prospective method to improve its selectivity. In this paper, MgO loaded biochar (MBC) was synthesized by co-pyrolysis of soybean straw and MgCl2·6H2O for selective remove Pb and Cd from calcium-rich wastewater. MBC exhibited excellent selective adsorption performance for Pb and Cd in calcium-rich wastewater due to the successful loading of MgO. The adsorption capacities of MBC for Pb and Cd were 582.57 and 167.40 mg/g, and the removal efficiency of Ca below 2.5% with an initial concentration of 800 mg/L. The ion exchange capacities of Pb and Cd enhanced almost 27 and 23 times than BC. By analyzing the results of BET, XRD, SEM-EDS, XPS and FTIR, the adsorption mechanisms of MBC were mainly including ion exchange, precipitation with minerals, and interaction with oxygen-containing functional groups. The easy preparation method and high selective adsorption capacity makes MBC an ideal alternative for efficiently selective removal Pb and Cd from calcium-rich wastewater.
Collapse
Affiliation(s)
- Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Dongsheng Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Conghui Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Wei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Liping Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
6
|
He Y, Wang Y, Cai C, Yang G, Zhou L, Ran G, Chen T, Zhu W. Cotton stalk derived carbon pretreated by microbial fermentation for selective uranium extraction. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
7
|
Liu H, Wang X, Li Y, Min Z, You H, Xie S, Liu Y, Yang H. Efficient uranium(VI) adsorbing bioinspired nano-sized hydroxyapatite composites: synthesis, tuning, and adsorption mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18156-18167. [PMID: 36207633 DOI: 10.1007/s11356-022-23492-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The production of large amounts of uranium-containing wastewater and its potential hazards has stimulated green and efficient material removal of uranium (VI). Inspired by the natural mineralization of bone, a facile and eco-friendly biomimetic synthesis of nano-hydroxyapatite (HAP) was carried out using chitosan (CS) as a template. It was found that the reaction temperature and the amount of precursors influence the particle size, crystallinity and specific surface area of the CS/HAP nanorods, and consequently their U(VI) adsorption efficiency. Moreover, the synthesized CS/HAP-40 with smaller particle size, lower crystallinity, and larger specific surface area show a more efficient U(VI) removal compared with CS/HAP-55 and CS/HAP-55-AT. It has a maximum adsorption capacity of 294.12 mg·g-1 of the CS/HAP-40. Interestingly, the U(VI) removal mechanism of CS/HAP-40 in acidic (pH = 3) and alkaline (pH = 8) aqueous solutions was found to be different. As one of the main results, the U(VI) adsorption mechanisms at pH 8 could be surface complexation and ion exchange. On the contrary, three different mechanisms could be observed at pH 3: dissolution-precipitation to form chernikovite, surface complexation, and ion exchange.
Collapse
Affiliation(s)
- Hongjuan Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, People's Republic of China
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Xi Wang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Yongjiang Li
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Zefu Min
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Hang You
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shuibo Xie
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Yingjiu Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, People's Republic of China.
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
8
|
Chen X, Xia H, Lv J, Liu Y, Li Y, Xu L, Xie C, Wang Y. Magnetic hydrothermal biochar for efficient enrichment of uranium(VI) by embedding Fe3O4 nanoparticles on bamboo materials from “one-can” strategy. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Dhanya V, Rajesh N. A cradle to cradle approach towards remediation of uranium from water using carbonized arecanut husk fiber. RSC Adv 2023; 13:4394-4406. [PMID: 36744280 PMCID: PMC9890654 DOI: 10.1039/d2ra08333g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Sustainable materials for remediation of pollutants from water is the need of the hour. In this study two carbonaceous adsorbents prepared through hydrothermal carbonisation and pyrolysis from arecanut husk fiber, an agricultural waste material were used for the adsorption of uranium from water. Batch adsorption data as interpreted using the Langmuir model showed adsorption capacities of 250 mg g-1 and 200 mg g-1 respectively at pH 6 for the hydrochar (AHFC) and the pyrochar (AHFT) exceeding that reported for most of the unmodified biochars. The adsorption followed pseudo-second order kinetics and was exothermic in nature. The high selectivity and excellent removal efficiencies on application to environmental ground water samples and good regeneration capacity make these sorbents promising eco-friendly materials for uranium remediation from water.
Collapse
Affiliation(s)
- V Dhanya
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| | - N Rajesh
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar Hyderabad 500078 India
| |
Collapse
|
10
|
Qiu M, Liu L, Ling Q, Cai Y, Yu S, Wang S, Fu D, Hu B, Wang X. Biochar for the removal of contaminants from soil and water: a review. BIOCHAR 2022; 4:19. [DOI: doi.org/10.1007/s42773-022-00146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 06/25/2023]
Abstract
AbstractBiochar shows significant potential to serve as a globally applicable material to remediate water and soil owing to the extensive availability of feedstocks and conducive physio-chemical surface characteristics. This review aims to highlight biochar production technologies, characteristics of biochar, and the latest advancements in immobilizing and eliminating heavy metal ions and organic pollutants in soil and water. Pyrolysis temperature, heat transfer rate, residence time, and type of feedstock are critical influential parameters. Biochar’s efficacy in managing contaminants relies on the pore size distribution, surface groups, and ion-exchange capacity. The molecular composition and physical architecture of biochar may be crucial when practically applied to water and soil. In general, biochar produced at relatively high pyrolysis temperatures can effectively manage organic pollutants via increasing surface area, hydrophobicity and microporosity. Biochar generated at lower temperatures is deemed to be more suitable for removing polar organic and inorganic pollutants through oxygen-containing functional groups, precipitation and electrostatic attraction. This review also presents the existing obstacles and future research direction related to biochar-based materials in immobilizing organic contaminants and heavy metal ions in effluents and soil.
Graphical Abstract
Collapse
|
11
|
Ahmed W, Xu T, Mahmood M, Núñez-Delgado A, Ali S, Shakoor A, Qaswar M, Zhao H, Liu W, Li W, Mehmood S. Nano-hydroxyapatite modified biochar: Insights into the dynamic adsorption and performance of lead (II) removal from aqueous solution. ENVIRONMENTAL RESEARCH 2022; 214:113827. [PMID: 35863445 DOI: 10.1016/j.envres.2022.113827] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Adsorption of lead as Pb(II) using biochar is an environmentally sustainable approach to remediate this kind of pollution affecting wastewater. In this study, rice straw biochar (BC) was modified by combination with nano-hydroxy-apatite (HAP), resulting in a material designated as BC@nHAP, with enhanced adsorption performance. Based on Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses, it was evidenced that, after modification, HAP greatly enhanced surface functional groups (i.e., -COOH and/or -OH) of raw biochar's surface. Batch tests showed that the maximum sorption capacity of BC (63.03 mg g-1) was improved due to the modification, reaching 335.88 mg g-1 in BC@nHAP. Pseudo-second order (PSO) kinetics fitted well the adsorption data (R2 = 0.99), as well as the Langmuir isotherm model (showing an adsorption value of 335.88 mg g-1 for qe). The results of thermodynamic calculations showed that the adsorption was primarily governed by chemisorption process. FTIR spectroscopy and XPS spectrum after adsorption further confirmed that the adsorption mechanisms were ion exchange with Pb2+ and surface complexation by -OH and -COOH. In addition, BC@nHAP revealed a brilliant regeneration capability. The maximum adsorption capacity by BC@nHAP was higher than that of raw biochar or other previously reported adsorbents. Therefore, BC@nHAP could be seen as a new sorbent material with high potential for real-scale heavy metal removal from wastewater, and specifically as a capable candidate new sorbent for Pb(II) removal from wastewater, which has clear implications as regard preservation of environmental quality and public health.
Collapse
Affiliation(s)
- Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China
| | - Tianwei Xu
- College of Science, Qiongtai Normal University, Haikou, 571127, China
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Sehrish Ali
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, 25198, Lleida, Spain
| | - Muhammad Qaswar
- Department of Environment, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Hongwei Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China
| | - Wenjie Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China.
| | - Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China.
| |
Collapse
|
12
|
Feng Y, Qiu X, Tao Z, E Z, Song J, Dong Y, Liang J, Li P, Fan Q. Oxygen-containing groups in cellulose and lignin biochar: their roles in U(VI) adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76728-76738. [PMID: 35670935 DOI: 10.1007/s11356-022-20981-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The adsorption behaviors of cellulose and lignin biochar depend on the evolution of their oxygen-containing groups to some extent. In this study, cellulose-rich pakchoi and lignin-rich corncob were selected to prepare the pyrolytic biochar at variable temperatures, named PBC and CBC, respectively. Their structure-function relationships were in-depth studied via the combination of the adsorption experiments of U(VI) and comprehensive spectral analyses. The maximal adsorption capacity of PBC 300, obtained at 300 °C, was measured as 46.62 mg g-1 for U(VI), which was ⁓1.3 times higher than 35.60 mg g-1 of CBC 300. U(VI) adsorption on PBC and CBC were predominantly ascribed to the coordination interaction between oxygen-containing groups and U(VI). Interestingly, the main complexation groups were distinct in both biochars due to the different inherent evolutions of cellulose and lignin. Volatile d-glucose chains in cellulose were apt to degrade rapidly, and the formed carboxyls acted as the most important sites in PBC. However, the stable aromatic network in lignin led to a slow degradation, and more hydroxyls thus remained in CBC, which controlled U(VI) adsorption. In this study, we obtained greatly cost-effective adsorbents of U(VI) and provided some essential insights into understanding the structural evolution-function relationship of cellulose and lignin biochar.
Collapse
Affiliation(s)
- Yongzhong Feng
- Gansu Province Land Development and Rehabilitation Center, Lanzhou, 730000, China
| | - Xiaoyi Qiu
- Gansu Province Land Development and Rehabilitation Center, Lanzhou, 730000, China
| | - Zhuolin Tao
- Gansu Province Land Development and Rehabilitation Center, Lanzhou, 730000, China
| | - Zhengyang E
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayu Song
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqiong Dong
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Petroleum Resources, Lanzhou, 730000, Gansu Province, China.
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Petroleum Resources, Lanzhou, 730000, Gansu Province, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Petroleum Resources, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
13
|
The Adsorption Potential of Cr from Water by ZnO Nanoparticles Synthesized by Azolla pinnata. Bioinorg Chem Appl 2022; 2022:6209013. [PMID: 36268517 PMCID: PMC9578909 DOI: 10.1155/2022/6209013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/12/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Aqueous solutions containing toxic elements (TEs) (such as hexavalent chromium (Cr (VI)) can be toxic to humans even at trace levels. Thus, removing TEs from the aqueous environment is essential for the protection of biodiversity, hydrosphere ecosystems, and humans. For plant fabrication of zinc oxide nanoparticles (PF-ZnONPs), Azolla pinnata plants were used, and X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), SEM, and FTIR techniques were used for the identification of PF-ZnONPs and ZnONPs, which were used to remove Cr (VI) from aqueous solution. A number of adsorption parameters were studied, including pH, dose, concentration of metal ions, and contact time. The removal efficiency of PF-ZnONPs for Cr (VI) has been found to be 96% at a time (60 min), 69.02% at pH 4, and 70.43% at a dose (10 mg·L−1). It was found that the pseudo-second-order model best described the adsorption of Cr (VI) onto PF-ZnONPs, indicating a fast initial adsorption via diffusion. The experimental data were also highly consistent with the Langmuir isotherm model calculations.
Collapse
|
14
|
Mehmood S, Mahmood M, Núñez-Delgado A, Alatalo JM, Elrys AS, Rizwan M, Weng J, Li W, Ahmed W. A green method for removing chromium (VI) from aqueous systems using novel silicon nanoparticles: Adsorption and interaction mechanisms. ENVIRONMENTAL RESEARCH 2022; 213:113614. [PMID: 35710023 DOI: 10.1016/j.envres.2022.113614] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
In the present study, we used the horsetail plant (Equisetum arvense) as a green source to synthesize silicon nanoparticles (GS-SiNPs), considering that it could be an effective adsorbent for removing chromium (Cr (VI)) from aqueous solutions. The characterization of GS-SiNPs was performed via Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photo electron spectroscopy (XPS) techniques. The batch test results of Cr (VI) adsorption on GS-SiNPs showed a high adsorption capacity, reaching 87.9% of the amount added. The pseudo-second order kinetic model was able to comprehensively explain the adsorption kinetics and provided a maximum Cr (VI) adsorption capacity (Qe) of 3.28 mg g-1 (R2 = 90.68), indicating fast initial adsorption by the diffusion process. The Langmuir isotherm model fitted the experimental data, and accurately simulated the adsorption of Cr (VI) on GS-SiNPs (R2 = 97.79). FTIR and XPS spectroscopy gave further confirmation that the main mechanism was ion exchange with Cr and surface complexation through -OH and -COOH. Overall, the results of the research can be of relevance as regards a green and new alternative for the removal of Cr (VI) pollution from affected environments.
Collapse
Affiliation(s)
- Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, Campus Univ. s/n, 27002, Lugo, Univ. Santiago de Compostela, Spain
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Muhammad Rizwan
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Jiechang Weng
- Hainan Provincial Ecological and Environmental Monitoring Center, 571126, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| |
Collapse
|
15
|
Noli F, Dafnomili A, Sarafidis G, Dendrinou-Samara C, Pliatsikas N, Kapnisti M. Uranium and Thorium water decontamination via novel coated Cu-based nanoparticles; the role of chemistry and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156050. [PMID: 35598664 DOI: 10.1016/j.scitotenv.2022.156050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/06/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The removal of radioactive contaminants from aquifers is a matter of great concern. In this paper, coated copper-based nanoparticles (Cu-based NPs) were investigated as sorbent materials to remove uranium and thorium from low-level wastes, and especially from water, considering the influences of temperature, time, concentration, and pH. Cu-based NPs were derived through a hydrothermal synthesis from copper nitrate degradation in the presence of the bifunctional with COOH-terminated PEG, TEG as well as PEG 8000. The characterization was undertaken using XRD, TEM, TG/DTG, FTIR, and SEM-EDS. Isotherm models such as Langmuir and Freundlich were applied, while kinetic data were successfully reproduced by the pseudo-second-order equation and thermodynamic parameters were calculated. To investigate the removal mechanisms, UV-fluorescence and X-ray photoelectron spectroscopy were used. In the case of uranium, the predominant mechanism includes the formation of surface complexes, followed by extensive reduction (65%) of U(VI) to less soluble U(IV) while in the case of thorium, surface precipitation dominates. Copper nanoparticles exhibited significant U(VI) uptake capacity resulting in a decrease of the U-concentration below the acceptable limit of 30 μg/L and can be successfully applied in water treatment technology.
Collapse
Affiliation(s)
- Fotini Noli
- Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Argyro Dafnomili
- Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgios Sarafidis
- Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | | | - Nikolaos Pliatsikas
- Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Kapnisti
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| |
Collapse
|
16
|
Mehmood S, Ahmed W, Alatalo JM, Mahmood M, Imtiaz M, Ditta A, Ali EF, Abdelrahman H, Slaný M, Antoniadis V, Rinklebe J, Shaheen SM, Li W. Herbal plants- and rice straw-derived biochars reduced metal mobilization in fishpond sediments and improved their potential as fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154043. [PMID: 35202685 DOI: 10.1016/j.scitotenv.2022.154043] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Fishpond sediments are rich in organic carbon and nutrients; thus, they can be used as potential fertilizers and soil conditioners. However, sediments can be contaminated with toxic elements (TEs), which have to be immobilized to allow sediment reutilization. Addition of biochars (BCs) to contaminated sediments may enhance their nutrient content and stabilize TEs, which valorize its reutilization. Consequently, this study evaluated the performance of BCs derived from Taraxacum mongolicum Hand-Mazz (TMBC), Tribulus terrestris (TTBC), and rice straw (RSBC) for Cu, Cr, and Zn stabilization and for the enhancement of nutrient content in the fishpond sediments from San Jiang (SJ) and Tan Niu (TN), China. All BCs, particularly TMBC, reduced significantly the average concentrations of Cr, Cu, and Zn in the overlying water (up to 51% for Cr, 71% for Cu, and 68% for Zn) and in the sediments pore water (up to 77% for Cr, 76% for Cu, and 50% for Zn), and also reduced metal leachability (up to 47% for Cr, 60% for Cu, and 62% for Zn), as compared to the control. The acid soluble fraction accounted for the highest portion of the total content of Cr (43-44%), Cu (38-43%), and Zn (42-45%), followed by the reducible, oxidizable, and the residual fraction; this indicates the high potential risk. As compared with the control, TMBC was more effective in reducing the average concentrations of the acid soluble Cr (15-22%), Cu (35-53%), and Zn (21-39%). Added BCs altered the metals acid soluble fraction by shifting it to the oxidizable and residual fractions. Moreover, TMBC improved the macronutrient status in both sediments. This work provides a pathway for TEs remediation of sediments and gives novel insights into the utilization of BC-treated fishpond sediments as fertilizers for crop production.
Collapse
Affiliation(s)
- Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (U), Khyber Pakhtunkhwa 18000, Pakistan
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Michal Slaný
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 36 Bratislava, Slovakia; Institute of Construction and Architecture, Slovak Academy of Sciences, Dúbravská cesta 9, 845 03 Bratislava, Slovakia
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul 05006, Republic of Korea
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou City 570100, China.
| |
Collapse
|
17
|
Oymak T, Şafak ES. Removal of sulfadiazine from aqueous solution by magnetic biochar prepared with pomegranate peel. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2081205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tülay Oymak
- Faculty of Pharmacy, Department of Analytical Chemistry, Sivas Cumhuriyet University, Turkey
| | - Elif Sena Şafak
- Faculty of Pharmacy, Department of Analytical Chemistry, Sivas Cumhuriyet University, Turkey
| |
Collapse
|
18
|
Liu J, Shi S, Shu J, Li C, He H, Xiao C, Dong X, He Y, Liao J, Liu N, Lan T. Synthesis and characterization of waste commercially available polyacrylonitrile fiber-based new composites for efficient removal of uranyl from U(VI)-CO 3 solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153507. [PMID: 35101504 DOI: 10.1016/j.scitotenv.2022.153507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The existing species of uranium determines the design of novel sorbents towards uranium extraction from the natural waters. Herein, three composites based on waste commercially available polyacrylonitrile fiber (WPANF), namely WPANF/TiO2·xH2O, WPANF/CTAB-bentonite, and WPANF/NZVI, were first prepared and employed for the removal of U(VI) from the carbonate coexisted aqueous solutions. Among them, the WPANF/TiO2·xH2O exhibited the optimum sorption capacity of ~40.6 mg·g-1 (pH 8.0, C0 = 50 mg·L-1, and [CO3]Total = 2 mmol·L-1), which is significantly greater than the WPANF/CTAB-bentonite (~12.6 mg·g-1) and WPANF/NZVI (~10.3 mg·g-1). All sorption capacities decreased with the increases of initial pH, [NaCl], and [CO3]Total, due to the species transformation from UO2(CO3)22- and (UO2)2CO3(OH)3- to UO2(CO3)34- that enhanced the electrostatic repulsion and the competitive sorption. The XPS analysis and DFT calculations indicated that in the composites, WPANF was a role in strengthening the mechanical properties of composites rather than the main sorption sites for uranyl carbonates. The sorption mechanisms were mainly involved in -OH group coordination, Br- anions exchanges, and redox reactions. Desorption, reusability and U(VI) sorption test in the simulated seawater demonstrated that WPANF/TiO2·xH2O could be an alternative candidate for acquiring uranium resource. This work has screened the potential composites for U(VI) extraction from the natural waters, especially based on the practical U(VI) speciation, and provides a novel research approach for the removal of U(VI) towards U(VI)-CO3 systems.
Collapse
Affiliation(s)
- Jun Liu
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Shilong Shi
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Junxiang Shu
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Chao Li
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Hanyi He
- National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610005, P. R. China
| | - Chuyan Xiao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangqian Dong
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Yuhua He
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
19
|
Hamza MF, Wei Y, Khalafalla MS, Abed NS, Fouda A, Elwakeel KZ, Guibal E, Hamad NA. U(VI) and Th(IV) recovery using silica beads functionalized with urea- or thiourea-based polymers - Application to ore leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153184. [PMID: 35051487 DOI: 10.1016/j.scitotenv.2022.153184] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Urea and thiourea have been successfully deposited at the surface of silica beads (through one-pot reaction with formaldehyde) for designing new sorbents for U(VI) and Th(IV) recovery (UR/SiO2 and TUR/SiO2 composites, respectively). These materials have been characterized by FTIR, titration, elemental analysis, BET, TGA, SEM-EDX for identification of structural and chemical properties, and interpretation of binding mechanisms. Based on deprotonation of reactive groups (amine, carbonyl, or thiocarbonyl) and metal speciation, the optimum pH was ~4. Uptake kinetics was fast (equilibrium within 60-90 min). Although the kinetic profiles are fitted by the pseudo-first order rate equation, the resistance to intraparticle diffusion cannot be neglected. Sorption isotherms were fitted by Langmuir equation (maximum sorption capacities: 1-1.2 mmol g-1). Thermodynamics are also investigated showing differences between the two types of functionalized groups: exothermic for TUR/SiO2 and endothermic for UR/SiO2. Metal desorption is highly effective using 0.3-0.5 M HCl solutions: total desorption occurs within 30-60 min; sorption/desorption properties are remarkably stable for at least 5 cycles. The sorbents have marked preference for U(VI) and Th(IV) over alkali-earth and base metals at pHeq ~4.8. By preliminary precipitation steps, it is possible "cleaning" ore leachates of pegmatite ore, and recovering U(VI) and Th(IV) using functionalized silica beads. After elution and selective recovery by precipitation with oxalate (Th-cake) and alkaline (U-cake), the metals can be valorized.
Collapse
Affiliation(s)
- Mohammed F Hamza
- School of Nuclear Science and Technology, University of South China, Heng Yang 421001, China; Nuclear Materials Authority, POB 530, El-Maadi, Cairo, Egypt.
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Heng Yang 421001, China; School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | | | - Neveen S Abed
- Nuclear Materials Authority, POB 530, El-Maadi, Cairo, Egypt.
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Khalid Z Elwakeel
- University of Jeddah, College of Science, Department of Chemistry, Jeddah, Saudi Arabia; Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt.
| | - Eric Guibal
- Polymers Composites and Hybrids (PCH), IMT Mines Ales, Alès, France.
| | - Nora A Hamad
- Faculty of Science, Menoufia University, Shebine El-Koam, Egypt.
| |
Collapse
|
20
|
Peng T, Liao W, Gu G, Qiu G, Wu X, Yang F, Zeng W. Insights into the role of extracellular DNA in heavy metal adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152067. [PMID: 34863749 DOI: 10.1016/j.scitotenv.2021.152067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Extracellular polymeric substances (EPS) participate in heavy metal adsorption in the aquatic environments. Extracellular DNA (eDNA) is an essential component of EPS, but its involvement in metal binding remains ambiguous. Herein, the role of eDNA in Cd(II) and Ni(II) adsorption was described using a combination of semi-quantitative and qualitative approaches. EPS were extracted from Burkholderia sp. MBR-1 and eDNA accounted for 6.9% of the total mass of EPS. The eDNA in the extracted EPS was digested using the DNase II to prepare an eDNA-free EPS sample. Potentiometric titration unveiled that the number of total binding sites of the eDNA-free EPS was 19% lower than the untreated EPS. The Cd(II) and Ni(II) adsorption capacity of the eDNA-free EPS was lower than the untreated EPS at the pH range of 4-7. At pH 7, the results of batch adsorption experiments showed that removing eDNA from EPS resulted in declines of 12.6% and 15.7% in the adsorption capacities for Cd(II) and Ni(II), respectively. Furthermore, Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy unraveled that the phosphoryl groups and purines of eDNA are responsible for Cd(II) and Ni(II) complexation. The results demonstrated that eDNA plays an essential role in heavy metal adsorption.
Collapse
Affiliation(s)
- Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wanqing Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Guohua Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; CSIRO Process Science and Engineering, Clayton, Victoria 3168, Australia.
| |
Collapse
|
21
|
Lingamdinne LP, Choi JS, Angaru GKR, Karri RR, Yang JK, Chang YY, Koduru JR. Magnetic-watermelon rinds biochar for uranium-contaminated water treatment using an electromagnetic semi-batch column with removal mechanistic investigations. CHEMOSPHERE 2022; 286:131776. [PMID: 34371355 DOI: 10.1016/j.chemosphere.2021.131776] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Biosorption using modified biochar has been increasingly adopted for the sustainable removal of uranium-contaminated from an aqueous solution. In this research study, the facile preparation and surface characteristics of magnetized biochar derived from waste watermelon rind to treat U(VI) contaminated water were investigated. The porosity, specific surface area, adsorption capacity, reusability, and stability were effectively improved after the magnetization of biochar. The kinetics and isotherm studies found that the U(VI) adsorption was rate-limiting monolayer sorption on the homogeneous surface of magnetized watermelon rind biochar (MWBC). The maximum adsorption capacity was found to be 323.56 mg of U(VI) per g of MWBC at pH 4.0 and 293 K that was higher than that of watermelon rind biochar (WBC) (135.86 mg g-1) and other sourced biochars. The surface interaction mechanism, environmental feasibility, applicability for real-filed water treatment studied in the electromagnetic semi-batch column, and reusability of MWBC were also explored. Furthermore, salient raised the ion exchange and complexation action capacity of MWBC due to the presence of Fe oxide. The overall results indicated that MWBC was not only inexpensive and had a high removal capacity for U(VI), but it also easily enabled phase separation from an aqueous solution, with more than three times reusability at a minimum removal capacity of 99%.
Collapse
Affiliation(s)
| | - Jong-Soo Choi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | | | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, 1410, Darussalam, Brunei
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
22
|
Chen X, Wang Y, Lv J, Feng Z, Liu Y, Xia H, Li Y, Wang C, Zeng K, Liu Y, Yuan D. Simple one-pot synthesis of manganese dioxide modified bamboo-derived biochar composite for uranium(VI) removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj02292c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploitation of bamboo-derived biochar offers a lucrative opportunity for using moso bamboo due to its short growth cycle, large quantity and universality. Novel MnO2 modified bamboo-derived biochar composites (MnO2@BBC) were...
Collapse
|
23
|
Ahmed W, Núñez-Delgado A, Mehmood S, Ali S, Qaswar M, Shakoor A, Chen DY. Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: Adsorption behavior and mechanism. ENVIRONMENTAL RESEARCH 2021; 201:111518. [PMID: 34129867 DOI: 10.1016/j.envres.2021.111518] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/22/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
The exploration and rational design of easily separable and highly efficient sorbents with the sufficient capability of retaining radioactive and toxic uranium U(VI) is paramount. In this study, a hydroxyapatite (HAP) biochar nanocomposite (BR/HAP) was successfully fabricated from rice straw biochar (BR), to be used as a new and efficient adsorbent for removing U(VI) from aqueous solution. Both BR and the BR/HAP composite were characterized via Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS) techniques. Batch test results showed that BR/HAP exhibited remarkably higher adsorption capacity than the raw BR. A pseudo-second order kinetic model thoroughly explained the adsorption kinetics, providing the maximum U(VI) adsorption capacities (qe) of 110.56 mg g-1 (R2 = 0.98) and 428.25 mg g-1 (R2 = 0.99), for BR and BR/HAP, respectively, which was indicative of the rate-limited sorption via diffusion or surface complexation after rapid initial adsorption steps. The Langmuir isotherm model fitted the experimental data to accurately simulate the adsorption of U(VI) onto BR and BR/HAP (R2 = 0.97 and R2 = 0.99). The thermodynamic results showed negative values for ΔG°, clearly indicating that the reaction was spontaneous, as well as positive values for ΔH° (11.04 kJ mol-1 and 28.86 kJ mol-1, respectively) and ΔS° (88.97 kJ mol-1 K-1, and 183.42 kJ mol-1 K-1), making clear the endothermic nature of U(VI) adsorption onto both sorbents, with an increase in randomness at a molecular level. FTIR spectroscopy and XPS spectrum further confirmed that the primary mechanisms were ion exchange with UO22+ and surface complexion by -OH and -COOH. In addition, BR/HAP showed an excellent reusability, making it a promising candidate as a new sorbent for U(VI) removal from wastewater. In view of that, it would be interesting to perform future research to explore practical implications of this sorbent material regarding protection from environmental and public health issues related to that pollutant.
Collapse
Affiliation(s)
- Waqas Ahmed
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Sajid Mehmood
- College of Ecology and Environment, Hainan University, Haikou City, 570100, PR China
| | - Sehrish Ali
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Muhammad Qaswar
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, 25198, Lleida, Spain
| | - Di-Yun Chen
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| |
Collapse
|