1
|
Lamprea Pineda PA, Demeestere K, Toledo M, Boon N, Van Langenhove H, Walgraeve C. Long-term biofiltration of gaseous N,N-dimethylformamide: Operational performance and microbial diversity analysis at different conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130767. [PMID: 36640506 DOI: 10.1016/j.jhazmat.2023.130767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/15/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
N,N-Dimethylformamide (DMF) is an organic solvent produced in large quantities worldwide. It is considered as a hazardous air pollutant and its emission should be controlled. However, only a limited number of studies have been performed on the removal of gaseous DMF by biological technologies. In this paper, we evaluate the removal of DMF under mesophilic and thermophilic conditions in a lab-scale biofilter for 472 days. The results show that, at ambient temperature, the biofilter achieved an average removal efficiency (RE) of 99.7 ± 0.3 % at Inlet Loads (ILs) up to 297 ± 52 g DFM m-3 h-1 (Empty Bed Residence Time (EBRTs) of 10.7 s). However, a decrease in EBRT (6.4 s) led to an unstable outlet concentration and, thus, to a drop in the biofilter performance (average RE: 90 ± 9 %). Moreover, an increase in temperature up to 65 °C led to a gradual decrease in RE (till 91 ± 7 %). Microbial analysis indicates that once the microorganisms encountered DMF, Rhizobiaceae dominated followed by Alcaligenaceae. Afterwards, a strong decrease in Rhizobiaceae was observed at every increase in temperature, and at 65 °C, the taxa were more heterogeneous. Overall, our experimental results indicate that biofiltration is a promising technique to remove DMF from waste gas streams.
Collapse
Affiliation(s)
- Paula Alejandra Lamprea Pineda
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Manuel Toledo
- Chemical Engineering Department, University of Córdoba, Campus Universitario de Rabanales, Ctra. N-IV, Km 396, 14071, Córdoba, Spain.
| | - Nico Boon
- Center for Microbial Ecology and Technology - CMET, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Christophe Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Eslami A, Mehdipour F, Feizi R, Ghanbari F, Lin KYA, Bagheri A, Madihi-Bidgoli S. Periodate activation by concurrent utilization of UV and US for the degradation of para-nitrophenol in water: A synergistic approach. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
3
|
Zhu G, Zhang H, Yuan R, Huang M, Liu F, Li M, Zhang Y, Rittmann BE. How Comamonas testosteroni and Rhodococcus ruber enhance nitrification in the presence of quinoline. WATER RESEARCH 2023; 229:119455. [PMID: 36516493 DOI: 10.1016/j.watres.2022.119455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Because many wastewater-treatment plants receive effluents containing inhibitory compounds from chemical or pharmaceutical facilities, the input of these inhibitors can lead to failure of nitrification and total-N removal. Nitrification de facto is the more important process, as it is the first step of nitrogen removal and involves slow-growing autotrophic bacteria. In this work, quinoline, the target compound severely inhibited nitrification: The biomass-normalized nitrification rate decreased four-fold in the presence of quinoline. The inhibition was relieved by bioaugmenting Comamonas testosteroni or Rhodococcus ruber to the nitrifying biomass. Because the inhibition was derived from a quinoline intermediate, 2‑hydroxyl quinoline (2HQ), not quinoline itself, nitrification was accelerated only after 2HQ disappeared due to the addition of R. ruber or C. testosteroni. R. ruber was superior to C. testosteroni for 2HQ biodegradation and accelerating nitrification. Besides accelerating nitrification, adding C. testosteroni or R. ruber led to the enrichment of Nitrospira, which appeared to be carrying out commamox metabolism, since ammonium-oxidizing bacteria were not enriched.
Collapse
Affiliation(s)
- Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Haiyun Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Ru Yuan
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Meng Huang
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Fei Liu
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Mo Li
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China.
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P.R. China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ85287-5701, United States
| |
Collapse
|
4
|
Zhu C, Huang H, Chen Y. Recent advances in biological removal of nitroaromatics from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119570. [PMID: 35667518 DOI: 10.1016/j.envpol.2022.119570] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Various nitroaromatic compounds (NACs) released into the environment cause potential threats to humans and animals. Biological treatment is valued for cost-effectiveness, environmental friendliness, and availability when treating wastewater containing NACs. Considering the significance and wide use of NACs, this review focuses on recent advances in biological treatment systems for NACs removal from wastewater. Meanwhile, factors affecting biodegradation and methods to enhance removal efficiency of NACs are discussed. The selection of biological treatment system needs to consider NACs loading and cost, and its performance is affected by configuration and operation strategy. Generally, sequential anaerobic-aerobic biological treatment systems perform better in mineralizing NACs and removing co-pollutants. Future research on mechanism exploration of NACs biotransformation and performance optimization will facilitate the large-scale application of biological treatment systems.
Collapse
Affiliation(s)
- Cuicui Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
Li Y, Zhao J, Li Y, Jin B, Wang L, Li Y. Effects of combined 4-chlorophenol and Cu 2+ on functional genes for nitrogen and phosphorus removal and heavy metal resistance genes in sequencing batch bioreactors. BIORESOURCE TECHNOLOGY 2022; 346:126666. [PMID: 34990861 DOI: 10.1016/j.biortech.2021.126666] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The effects of combined 4-chlorophenol (4-CP) and Cu2+ on microbial community structures, functional genes for nitrogen and phosphorus removal, and heavy metal resistance genes (HMRGs) were explored in wastewater treatment using sequencing batch bioreactors (SBRs). Compared to influent 4-CP (2.3-4.5 mg/L), the removal of pollutants including chemical oxygen demands (COD), NH4+-N, PO43--P, and 4-CP was inhibited under Cu2+ stress (5 mg/L). The effects of Cu2+ on microbial community structures were more significant than those of 4-CP with respect to operational time, while the dominant function from gene information was not affected with or without influent 4-CP and Cu2+ via sequencing analysis. The influent 4-CP and Cu2+ largely influenced the dynamic changes of functional genes and HMRGs, and the abundance of partial HMRGs was correlated to the functional genes and dominant genera. This study provides insights into the treatment of combined chlorophenols and Cu2+ in wastewater.
Collapse
Affiliation(s)
- Yahe Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|