1
|
Song X, Yi J, Chen Y, Su Y, Wang H, Liu A, Wu D, Li Q. Condensable particulate matter emissions regulated by flue gas desulfurization technologies in typical industrial plants. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137527. [PMID: 39933464 DOI: 10.1016/j.jhazmat.2025.137527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Condensable particulate matter (CPM) emissions have exceeded filterable particulate matter from industrial plants under strict emission standards. However, how CPM emission characteristics are affected by air pollution control devices (especially end-of-pipe flue gas desulfurization (FGD) systems) remains to be investigated. Here, we systematically demonstrated CPM emissions regulated by various FGD systems through field measurements of 22 typical industrial sites. Inorganic CPM (57.6 ∼ 99.5 % of CPM) predominantly consisted of water-soluble ions, whose concentrations were distinct between the inlet and outlet of FGD units. SO42- or Cl- mainly contributed to inorganic CPM before desulfurization, while SO42- and NH4+ accounted for 49.2 ∼ 96.3 % of inorganic CPM after FGD. Higher removal efficiencies for Cl- (98.1 ± 1.9 %) than SO42- (50.1 ± 23.8 %) in partial lime-gypsum-wet FGD systems could convert Cl--rich CPM into SO42--rich CPM. Ammonia-wet FGD and activated coke FGD failed to address NH3 slip issues effectively, leading to NH4+- rich (44.0 ∼ 96.0 %) CPM after desulfurization. Conversions of precursors (i.e., NH3, HCl, and SO3) before and after FGD were consistent with those of water-soluble ions. This study revealed chemical-specific transformations of CPM under different FGD processes, highlighting the control of the NH3 slip to reduce CPM emissions.
Collapse
Affiliation(s)
- Xiwen Song
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Jinrun Yi
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Yuanzheng Chen
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Yi Su
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Huantao Wang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Anlin Liu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China; National Engineering Research Center for Flue Gas Desulfurization, College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Di Wu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
| | - Qing Li
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No. 3663 Northern Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
2
|
Matei E, Râpă M, Mateș IM, Popescu AF, Bădiceanu A, Balint AI, Covaliu-Mierlă CI. Heavy Metals in Particulate Matter-Trends and Impacts on Environment. Molecules 2025; 30:1455. [PMID: 40286077 PMCID: PMC11990512 DOI: 10.3390/molecules30071455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Heavy metals represent a class of pollutants detected at concentrations lower than 10 ppm in different matrices that are intensively monitored due to having a major impact on human health. Industrial activities including mining, agriculture, and transport, determine their presence in different environments. Corrosion phenomena of various installations, volcanic eruptions, or atmospheric deposition on the soil surface and in water can contaminate the respective environments. Atmospheric pollutants in the form of suspended dust particles with diameters below 10 microns are predominantly composed of different metallic species from Cd, Cr, Cu, Ni, etc. This paper presents a review of the main sources and types of heavy metals present in the atmosphere in the composition of particulate matter (PM), highlighting the main mechanisms of occurrence and detection techniques, including the impact on bio-geo-chemical processes in the soil and food chain, in close correlation with their impact on environment and human health. The purpose of this review is to highlight the current level of knowledge regarding the global situation of heavy metals in PM and to identify gaps as targets for future research.
Collapse
Affiliation(s)
- Ecaterina Matei
- Department of Metallic Material Processing and Environment Engineering, Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Maria Râpă
- Department of Metallic Material Processing and Environment Engineering, Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Ileana Mariana Mateș
- Central Military Emergency University Hospital “Dr. Carol Davila”, 88 Vulcănescu, 010825 Bucharest, Romania
| | - Anca-Florentina Popescu
- Biotechnical Systems Engineering Doctoral School, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (A.-F.P.); (A.B.); (A.I.B.)
| | - Alexandra Bădiceanu
- Biotechnical Systems Engineering Doctoral School, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (A.-F.P.); (A.B.); (A.I.B.)
| | - Alexandru Ioan Balint
- Biotechnical Systems Engineering Doctoral School, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (A.-F.P.); (A.B.); (A.I.B.)
| | - Cristina Ileana Covaliu-Mierlă
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| |
Collapse
|
3
|
Tong H, Wang Y, Huang L, Su Q, Yi X, Zhai H, Jiang S, Liu H, Liao J, Li L. Study of condensable particulate matter from stationary combustion sources: Source profiles, emissions, and impact on ambient fine particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176222. [PMID: 39299331 DOI: 10.1016/j.scitotenv.2024.176222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Although significant progress has been made in controlling emissions from stationary combustion sources in China over the past decade, understanding of condensable particulate matter (CPM) emissions from these sources and their impact on ambient PM2.5 remains limited. In this study, we established the source profiles and emission inventories of CPM from coal-fired industrial boilers (CFIBs), coal-fired power plants (CFPPs), and iron and steel industry (ISIs) for the Yangtze River Delta (YRD) region of China; furthermore, the air quality model (Community Multiscale Air Quality, CMAQ) was used to evaluate the impact of CPM emissions from these three types of stationary combustion sources on ambient PM2.5 during Feb. 2018, a month characterized by elevated PM2.5 concentrations. The results indicated that CPM emissions from these three sources in the YRD region before and after the implementation of the ultra-low emissions (ULE) policy amounted to 109,839 and 43,338 tons, respectively, with particularly high emission intensity along the Yangtze River. The implementation of CFPPs ULE policy was shown to reduce the impact of CPM emissions from these three stationary sources on monthly PM2.5 concentrations from 0.92 μg/m3 to 0.41 μg/m3 (with a maximum of 5.35 μg/m3). This reduction exceeded the 0.31 μg/m3 decrease in PM2.5 concentrations resulting from the emission reductions of conventional pollutants (FPM, SO2 and NOx). CPM emissions from these three stationary sources were found to increase the PM2.5 by 0.68 μg/m3 during pollution periods. The largest components of PM2.5 contributed by CPM emissions from stationary combustion sources were sulfate, organic carbon, and nitrate, accounting for 21.4 %, 21.1 %, and 18.2 %, respectively. Particularly, contributions from CPM emissions to PM2.5 varied by altitude, with a relatively large impact at altitudes between 220 and 460 m. Attention should be given to CPM emission control, with particular priority placed on implementing ULE measures for ISIs and CFIBs.
Collapse
Affiliation(s)
- Huanhuan Tong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Yangjun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China.
| | - Ling Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Qingfang Su
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Xin Yi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Hehe Zhai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Sen Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Hanqing Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Jiaqiang Liao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Li J, Xiao X, Li H, Zhao Z, Guan C, Li Y, Hou X, Wang W. Emission characteristics of condensable particulate matter during the production of solid waste-based sulfoaluminate cement: Compositions, heavy metals, and preparation impacts. CHEMOSPHERE 2024; 355:141871. [PMID: 38570052 DOI: 10.1016/j.chemosphere.2024.141871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Recycling solid waste for preparing sulfoaluminate cementitious materials (SACM) represents a promising approach for low-carbon development. There are drastic physical-chemical reactions during SACM calcination. However, there is a lack of research on the flue gas pollutants emissions from this process. Condensable particulate matter (CPM) has been found to constitute the majority of the primary PM emitted from various fuel combustion. In this study, the emission characteristics of CPM during the calcination of SACM were determined using tests in both a real-operated kiln and laboratory experiments. The mass concentration of CPM reached 96.6 mg/Nm3 and occupied 87% of total PM emission from the SACM kiln. Additionally, the mass proportion of SO42- in the CPM reached 93.8%, thus indicating that large quantities of sulfuric acid mist or SO3 were emitted. CaSO4 was one key component for the formation of main mineral ye'elimite (3CaO·3Al2O3·CaSO4), and its decomposition probably led to the high SO42- emission. Furthermore, the use of CaSO4 as a calcium source led to SO42- emission factor much higher than conventional calcium sources. Higher calcination temperature and more residence time also increased SO42- emission. The most abundant heavy metal in kiln flue gas and CPM was Zn. However, the total condensation ratio of heavy metals detected was only 40.5%. CPM particles with diameters below 2.5 μm and 4-20 μm were both clearly observed, and components such as Na2SO4 and NaCl were conformed. This work contributes to the understanding of CPM emissions and the establishment of pollutant reduction strategies for waste collaborative disposal in cement industry.
Collapse
Affiliation(s)
- Jingwei Li
- Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Ji'nan, 250014, China.
| | - Xin Xiao
- Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Ji'nan, 250014, China
| | - Haogen Li
- Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Ji'nan, 250014, China
| | - Zhonghua Zhao
- State Grid Shandong Electric Power Research Institute, Ji'nan, 250003, China
| | - Chuang Guan
- Shandong Guoshun Construction Group, Ji'nan, 250399, China
| | - Yuzhong Li
- Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Ji'nan, 250014, China
| | - Xiangshan Hou
- Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Ji'nan, 250014, China
| | - Wenlong Wang
- Shandong Engineering Laboratory for Solid Waste Green Materials, National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Ji'nan, 250014, China
| |
Collapse
|
5
|
Xu Z, Wu Y, Liu S, Tang M, Lu S. Migration and distribution characteristics of typical organic pollutants in condensable particulate matter of coal-fired flue gas and by-products of wet flue gas desulfurization system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26170-26181. [PMID: 38498134 DOI: 10.1007/s11356-024-32923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
The wet flue gas desulfurization (WFGD) system of coal-fired power plants shows a good removal effect on condensable particulate matter (CPM), reducing the dust removal pressure for the downstream flue gas purification devices. In this work, the removal effect of a WFGD system on CPM and its organic pollutants from a coal-fired power plant was studied. By analyzing the organic components of the by-products emitted from the desulfurization tower, the migration characteristics of organic pollutants in gas, liquid, and solid phases, as well as the impact of desulfurization towers on organic pollutants in CPM, were discussed. Results show that more CPM in the flue gas was generated by coal-fired units at ultra-low load, and the WFGD system had a removal efficiency nearly 8% higher than that at full load. The WFGD system had significant removal effect on two typical esters, especially phthalate esters (PAEs), with the highest removal efficiency of 49.56%. In addition, the WFGD system was better at removing these two esters when the unit was operating at full load. However, it had a negative effect on n-alkanes, which increased the concentration of n-alkanes by 8.91 to 19.72%. Furthermore, it is concluded that the concentration distribution of the same type of organic pollutants in desulfurization wastewater was similar to that in desulfurization slurry, but quite different from that in coal-fired flue gas. The exchange of three organic pollutants between flue gas and desulfurization slurry was not significant, while the concentration distribution of organic matters in gypsum was affected by coal-fired flue gas.
Collapse
Affiliation(s)
- Zhenyao Xu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yujia Wu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Siqi Liu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Minghui Tang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
6
|
Zou Y, Liu X, Wu K, Zhou Z, Xu M. The effect of multiple factors on changes in organic-inorganic fractions of condensable particulate matter during coal combustion. CHEMOSPHERE 2024; 353:141638. [PMID: 38442775 DOI: 10.1016/j.chemosphere.2024.141638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/05/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Condensable particulate matter (CPM) from coal combustion is the focus of current pollutant emission studies, and CPM can be divided into inorganic and organic fractions according to the component characteristics. At present, the effects of different factors in the combustion process on the organic and inorganic components of CPM have not been discussed systematically. Here, we conducted combustion experiments collected the generated CPM on a well-controlled drip tube furnace, and investigated the effects of different factors on the generation of organic and inorganic components of CPM by varying the furnace wall insulation temperature, the ratio of gas supply components and the water vapor content in the flue gas. The results showed that the increase in combustion temperature (1300-1500 °C) and oxygen concentration (15-25%) reduced the total CPM generation by 9.8% and 19.98%, respectively, and the intervention of water vapor increased the ability of the whole CPM sampling device to capture ultrafine condensable particles. The generation of CPM organic components decreased with the enhancement of combustion temperature and oxygen content on combustion characteristics, and alkanes shifted to low carbon content. The amount of CPM inorganic components increased with the increase of water vapor content in the flue gas, and this change was dominated by SO42-. The above results provide a feasible idea for the next step of the precise reduction of CPM components.
Collapse
Affiliation(s)
- Yue Zou
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, PR China.
| | - Xiaowei Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, PR China.
| | - Kui Wu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, PR China.
| | - Zijian Zhou
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, PR China.
| | - Minghou Xu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, PR China.
| |
Collapse
|
7
|
Tong H, Wang Y, Tao S, Huang L, Jiang S, Bian J, Chen N, Kasemsan M, Yin H, Huang C, Chen H, Zhang K, Li L. Developed compositional source profile and estimated emissions of condensable particulate matter from coal-fired power plants: A case study of Yantai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161817. [PMID: 36708842 DOI: 10.1016/j.scitotenv.2023.161817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The emission and environmental impact of condensable particulate matter (CPM) from coal-fired power plants (CFPPs) are of increasing concern worldwide. Many studies on the characteristics of CPM emission have been conducted in China, but its source profile remains unclear, and its emission inventory remains high uncertainty. In this work, the latest measurements reported in the latest 33 studies for CPM inorganic and organic species emitted from CFPPs in China were summarized, and then a compositional source profile of CPM for CFPPs was developed for the first time in China, which involved 10 inorganic species and 71 organic species. In addition, the CPM emission inventory of CFPPs in Yantai of China was developed based on surveyed activity data, continuous emission monitoring system (CEMS), and the latest measurement data. The results show that: (1) Inorganic species accounted for 77.64 % of CPM emitted from CFPPs in Yantai, among which SO42- had the highest content, accounting for 23.74 % of CPM, followed by Cl-, accounting for 11.95 %; (2) Organic matter accounted for 22.36 % of CPM, among which alkanes accounted for the largest proportion of organic fraction (72.7 %); (3) Emission concentration method (EC) and CEMS-based emission ratio method (ERFPM,CEMS) were recommended to estimate CPM emissions for CFPPs; (4) The estimated CPM emission inventories of Yantai CFPPs in 2020 by the EC method and the ERFPM,CEMS method were 1231 tons and 929 tons, respectively, with uncertainties of -34 % ∼ 33 % and -27 % ∼ 57 %, respectively; (5) CPM emissions were mainly distributed in the northern coastal areas of Yantai. This developed CPM source profile and emission inventory can provide basic data for assessing the impacts of CPM on air quality and health. In addition, this study can provide an important methodology for developing CPM emission inventories and CPM emission source profiles for stationary combustion sources in other regions.
Collapse
Affiliation(s)
- Huanhuan Tong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Yangjun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China.
| | - Shikang Tao
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Ling Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Sen Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Jinting Bian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Nan Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Manomaiphiboon Kasemsan
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology, Thonburi, Bangkok 10140, Thailand; Center of Excellence on Energy Technology and Environment, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10140, Thailand
| | - Haiyan Yin
- Yantai Environmental Engineering Consulting Design Institute Co., Ltd., Yantai, Shandong 264000, China
| | - Cheng Huang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hui Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Kun Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Sheng Z, Zhang F, Wu T, Yang L. Variation of nitrate and nitrite in condensable particulate matter from coal-fired power plants under the simulated rapid condensing conditions. CHEMOSPHERE 2023; 318:137934. [PMID: 36702403 DOI: 10.1016/j.chemosphere.2023.137934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
In this work, condensation temperature, H2O vapor, SO2, SO3 and NH3 were studied to explore the formation mechanism of nitrate ions (NO3-) and nitrite ions (NO2-) in condensable particulate matter (CPM) discharged by ultra-low emission coal-fired power plants. Some important results were obtained: (i) The concentration of NO3- and NO2- increased with the decrease of condensation temperature, and H2O vapor could also promote the formation of NO3- and NO2-. (ii) The effects of SO2 and SO3 varied at different saturated states of flue gas, which was caused by the redox reaction of SO2 and NOX or the formation of H2SO4. (iii) NH3 could promote the nucleation of NO3- and NO2-, and the promotion effect also existed in the existence of SO2 or SO3. It is worth mentioning that SO3 and SO2 might synergistically inhibit the formation of NO3- and NO2-, regardless of the presence of NH3. The research results would enrich peoples understanding of the chemical and physical characteristics of NO3- and NO2- in CPM and provide a basic reference for the control of CPM emitted from coal-fired power plants.
Collapse
Affiliation(s)
- Zhongyi Sheng
- School of Environment, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Fuyang Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Tong Wu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Liu Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
9
|
Zhang F, Yang L, Sheng Z, Wu T, Chu X. Physicochemical characteristics of polycyclic aromatic hydrocarbons in condensable particulate matter from coal-fired power plants: A laboratory simulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120944. [PMID: 36584857 DOI: 10.1016/j.envpol.2022.120944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The objective of this study was to examine the physicochemical characteristics of polycyclic aromatic hydrocarbons (PAHs) in condensable particulate matter (CPM) during fast condensation (within several seconds). The concentration of PAHs increased as the condensation temperature decreased, indicating that the conversion of gaseous PAHs to CPM would be enhanced at low temperatures. PAH concentrations increased in relation to the number of rings in the fragment, with the high-ring (4-,5- and 6-ring) PAHs accounting for 89.70-92.30% and 99.78-99.80% of the total concentration and total toxic equivalent of PAHs. In addition, particulate-phase PAHs (0.1-1.0 μm), developed through the synergistic effect of PAHs and fine particles, were difficult to collect by fast condensation. Inorganic fine particles could be formed when ammonia-rich conditions prevail, reducing PAH condensation further. Furthermore, CPM was morphologically and chemically characterized. During the experiment, fine and well-aggregated CPMs were detected on the membrane, and the diameter of CPMs was further enhanced by the addition of 16 PAHs. Most of the C element was collected in the rinse fluid, thus indicating that PAHs in CPM were collected through condensation. Based on these findings, basic guidelines can be provided for the control of PAHs in flue gas from coal-fired power plants.
Collapse
Affiliation(s)
- Fuyang Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Liu Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Zhongyi Sheng
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Tong Wu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Xinyue Chu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
10
|
Zhang Z, Gong J, Li Y, Zhang W, Zhang T, Meng H, Liu X. Analysis of the influencing factors of atmospheric particulate matter accumulation on coniferous species: measurement methods, pollution level, and leaf traits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62299-62311. [PMID: 35397023 DOI: 10.1007/s11356-022-20067-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Urban trees, especially their leaves, have the potential to capture atmospheric particulate matter (PM) and improve air quality. However, the amount of PM deposited on leaf surfaces detected by different methods varies greatly, and quantitative understanding of the relationship between PM retention capacity and various microstructures of leaf surfaces is still limited. In this study, three measurement methods, including the leaf washing (LW) method, aerosol regeneration (AR) method, and scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) method, were used to determine the PM retention capacity of leaf surfaces of three coniferous species. Additionally, we analyzed the leaf traits and elemental composition of PM on leaves collected from different sites. The results showed that Pinus tabulaeformis and Abies holophylla were more efficient species in capturing PM than Juniperus chinensis, but different measurement methods could affect the detected results of PM accumulation on leaf surfaces. The concentrations of trace elements accumulated on leaf surfaces differed considerably between different sites. The greatest accumulation of elements that occurred on the leaf surface was at the Shenfu Highway site exposed to high PM pollution levels and the smallest accumulation at the Dongling park site. The stomatal density and contact angle were highly correlated with the PM retention capacity of leaf surfaces of the tested species (Pearson coefficient: r = 0.87, p < 0.01 and r = - 0.70, p < 0.05), while the roughness and groove width were not significantly correlated (Pearson coefficient: r = 0.16 and r = - 0.03). This study suggests that a methodological standardization for measuring PM is urgently required and this could contribute to selecting greening tree species with high air purification capacity.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Jialian Gong
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Yu Li
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Weikang Zhang
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
- Key Laboratory of Forest Tree Genetics, Breeding, and Cultivation of Liaoning Province, Liaoning, 110866, Shenyang, China.
| | - Tong Zhang
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Huan Meng
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xiaowei Liu
- Department of Landscape Architecture, Landscape Planning Laboratory, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| |
Collapse
|
11
|
Liu S, Wu Y, Xu Z, Lu S, Li X. Study on characteristics of organic components in condensable particulate matter before and after wet flue gas desulfurization system of coal-fired power plants. CHEMOSPHERE 2022; 294:133668. [PMID: 35063556 DOI: 10.1016/j.chemosphere.2022.133668] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/12/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Wet flue gas desulfurization (WFGD) in coal-fired power plants has a great impact on the emission of particulate matter, including filterable particulate matter (FPM) and condensable particulate matter (CPM). In this paper, CPM and FPM in flue gas before and after WFGD in coal-fired power plants were sampled in parallel. FPM was tested according to ISO standard 23210-2009, and CPM was tested according to U.S. EPA Method 202. A method for quantitatively analyzing fatty acid methyl esters in CPM was established, and the removal capacity of fatty acid methyl esters and phthalate esters by WFGD in a typical coal-fired unit was compared. Results show that WFGD has a significant effect on particle size distribution, concentration, and chemical composition. WFGD has a high removal efficiency of inorganic components in CPM, up to 54.74%. CPM contains a variety of organic compounds, including hydrocarbons, esters, siloxanes, halogenated hydrocarbons, and so on. In particular, esters are an important component in CPM, whose concentration tends to decrease after WFGD. Furthermore, a total of 11 fatty acid methyl esters and 5 phthalate esters were detected in CPM before and after WFGD. Noted that fatty acid methyl esters account for 13.38% of CPM, which make a higher contribution to the concentration of particulate matter than phthalate esters, while WFGD has a stronger control effect on the removal of phthalates.
Collapse
Affiliation(s)
- Siqi Liu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yujia Wu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhenyao Xu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
12
|
Zhai Y, Liu X, Han J, Zou Y, Huang Y, Wang H, Liu L, Xu M. Study on the removal characteristics of different air pollution control devices for condensable particulate matter in coal-fired power plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34714-34724. [PMID: 35040059 DOI: 10.1007/s11356-021-17952-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
This study reports the emissions of condensable particulate matter (CPM) and filterable particulate matter (FPM) in two coal-fired power plants with different air pollution control devices (APCDs). The mechanisms of CPM removed by existing APCDs in coal-fired power plants were explored, and a series of analyses were also carried out on the composition and characteristics of CPM. The results show that the removal efficiencies to CPM by electrostatic-bag-precipitator (EBP) and ESP are 77.34% and 79.23%, respectively, so the difference is not obvious because the interception filtration mechanisms of baghouses for CPM have less effect on CPM compared to FPM. The mechanism of EBP/ESP to remove CPM is mainly electrostatic adsorption and FPM's adsorption. The concentration of CPM decreases when passing through WFGD. However, the WESP can increase the CPM in different ways. For example, the pollution of the circulation of the flushing fluid may cause the increase of CPM. In addition, CPM mainly includes three parts. The first part is organic fractions such as alkanes and esters; the second is the water-soluble ions that include SO42-, NH4+, and Cl-; and the third is Na, Ca, and other minerals. The research in this study is helpful to understand the impact of existing APCDs in coal-fired power plants on CPM and the sources of CPM.
Collapse
Affiliation(s)
- Yunfei Zhai
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaowei Liu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jingkun Han
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yue Zou
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yubo Huang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huakun Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Liu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Minghou Xu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
13
|
Liu A, Yi J, Ding X, Deng J, Wu D, Huo Y, Jiang J, Li Q, Chen J. An online technology for effectively monitoring inorganic condensable particulate matter emitted from industrial plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128221. [PMID: 35007968 DOI: 10.1016/j.jhazmat.2022.128221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The concentration of condensable particulate matter (CPM) has gradually exceeded that of filterable particulate matter emitted from industrial plants equipped with advanced air pollution control systems. However, there is still no available online technology to measure CPM emissions. Based on the significant linear correlations (R2 > 0.87, p < 3 × 10-3) between the electrical conductivity (EC) values and ionic mass concentrations of the CPM solutions when the interference of H+ was excluded. We developed an online inorganic CPM monitoring system, including a cooling and condensation unit, pH and EC meters, a self-cleaning unit, and an automatic control unit. The CPM mass concentrations obtained by the developed online monitoring system agree well (mean bias 3.8-20.7%) with those obtained by the offline system according to USEPA Method 202 when used in parallel during real-world studies. Furthermore, individual ion mass concentrations of CPMs can even be retrieved separately with a time resolution of one hour when industrial plants are under steady operating conditions. The newly developed system makes the online monitoring of CPM emissions available and lays a foundation for the control of CPM emitted from industrial sources to further improve air quality.
Collapse
Affiliation(s)
- Anlin Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No. 3663 Northern Zhongshan Road, Shanghai 200062, China
| | - Jinrun Yi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No. 3663 Northern Zhongshan Road, Shanghai 200062, China
| | - Xiang Ding
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianguo Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Di Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yaoqiang Huo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No. 3663 Northern Zhongshan Road, Shanghai 200062, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No. 3663 Northern Zhongshan Road, Shanghai 200062, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention,National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Eco-Chongming (SIEC), No. 3663 Northern Zhongshan Road, Shanghai 200062, China
| |
Collapse
|