1
|
Hao L, Guo C, Hu Z, Guo R, Liu X, Liu C, Tian Y. Single-atom catalysts based on Fenton-like/peroxymonosulfate system for water purification: design and synthesis principle, performance regulation and catalytic mechanism. NANOSCALE 2022; 14:13861-13889. [PMID: 35994044 DOI: 10.1039/d2nr02989h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Novel single-atom catalysts (SACs) have become the frontier materials in the field of environmental remediation, especially wastewater purification because of their nearly 100% ultra-high atomic utilization and excellent properties. SACs can be used in Fenton-like catalytic reactions to activate various peroxides (such as hydrogen peroxide (H2O2), ozone (O3), and persulfate (PSs)) to release active radicals and non-radicals, acting on target pollutants, and realize their decomposition and mineralization. Among them, peroxymonosulfate (PMS) in PS systems has gradually become an important oxidant in Fenton-like processes due to its asymmetric molecular structure and characteristics of easy storage and transportation. Focusing on the numerous proposed strategies for the synthesis and performance regulation of Fenton-like SACs, it has been confirmed that the coordination of isolated metal atoms and the support/carrier enhances the structural robustness and chemical stability of these catalysts and optimizes their catalytic activity and kinetics. Moreover, the tunability of the coordination environment and electronic properties of SACs can improve their other catalytic properties, such as cycle stability and selectivity. Thus, to systematically explain the relationship between the active center, catalyst performance and the corresponding potential catalytic mechanism, herein, we focus on the representative scientific work on the preparation strategy, catalytic application and performance regulation of Fenton-like SACs. Specifically, we review the typical Fenton-like SAC reaction processes and catalytic mechanisms for the degradation of refractory organic compounds in advanced oxidation processes (AOPs). Finally, the future development and challenges of Fenton-like SACs are presented.
Collapse
Affiliation(s)
- Liping Hao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Chao Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Xuanwen Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Chunming Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Ye Tian
- The First Hospital of Qinhuangdao 066099, China
| |
Collapse
|
2
|
Merodio-Morales E, Mendoza-Castillo D, Bonilla-Petriciolet A, Reynel-Avila H, Milella A, di Bitonto L, Pastore C. A novel CO2 activation at room temperature to prepare an engineered lanthanum-based adsorbent for a sustainable arsenic removal from water. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|