1
|
Nong J, Xu R, Wei S, Fan S, Qiu Q, Li Y, Liu G. Geographical variation and the role of climate and soil on phenotypic traits of Calamus rhabdocladus across provenances in China. BMC PLANT BIOLOGY 2025; 25:365. [PMID: 40114042 PMCID: PMC11924748 DOI: 10.1186/s12870-025-06329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Phenotypic traits are indicative of a plant's resource utilization and survival strategies. Understanding the geographical differentiation of Calamus rhabdocladus phenotypes holds significant theoretical and practical value for genetic breeding and the selection of superior geographical provenances. This study analyzed the geographic variation in 15 phenotypic traits of leaves, stems, roots, flagellums, and other parts from 10 provenances of C. rhabdocladus in China. The phenotypic characters of C. rhabdocladus were measured in the field, while soil factors were collected in the field and analyzed in the laboratory. Climatic data were obtained through online sources. Pearson's correlation was used to analyze the relationships between the 15 phenotypic traits. Redundancy analysis and variance decomposition analysis were used to quantify the effects of climatic and soil factors on the geographical variation in phenotypic traits of C. rhabdocladus, and the key influencing factors were obtained by comparing the explanatory rates of soil and climatic factors on phenotypic traits of C. rhabdocladus. RESULTS The results showed that the Coefficient of variation (CV) of phenotypic traits among provenances ranges from 7.48 to 182.16%, with root dry weight exhibiting the largest variation. The plasticity indices varied between 0.16 and 0.82, with the flagellum volume showing the highest value. Significant correlations were observed among leaf, stem, flagellum, and root traits. Average air temperature was identified as the crucial climatic factor influencing the phenotypic traits of C. rhabdocladus, while effective nitrogen and organic matter content were the key soil factors influencing these traits. Within the scope of this study, climatic factors provided a better explanation of phenotype variation than soil factors. CONCLUSIONS These results highlight the importance of climatic adaptation in shaping phenotypic diversity and suggest that future research should explore the genetic mechanisms underlying these traits and their interactions with environmental factors at finer spatial scales.
Collapse
Affiliation(s)
- Junqing Nong
- International Center for Bamboo and Rattan, Beijing, China
- Guangxi Forestry Research Institute, Nanning, Guangxi, China
| | - Ruijing Xu
- International Center for Bamboo and Rattan, Beijing, China
- International Center for Bamboo and Rattan Sanya Research Base, Sanya, Hainan, China
| | - Songpo Wei
- International Center for Bamboo and Rattan, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration Beijing for bamboo & Rattan Science and Technology, Beijing, China
- Yunnan Diannan Bamboo Forest Ecosystem Research Station, Yunnan, China
| | - Shaohui Fan
- International Center for Bamboo and Rattan, Beijing, China
| | - Quan Qiu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yiju Li
- International Center for Bamboo and Rattan, Beijing, China
- Key Laboratory of National Forestry and Grassland Administration Beijing for bamboo & Rattan Science and Technology, Beijing, China
| | - Guanglu Liu
- International Center for Bamboo and Rattan, Beijing, China.
- Yunnan Diannan Bamboo Forest Ecosystem Research Station, Yunnan, China.
| |
Collapse
|
2
|
Lochin P, Malherbe P, Marteau B, Godfroy J, Gerle F, Marshall J, Puijalon S, Singer MB, Stella JC, Piégay H, Vernay A. The ant and the grasshopper: Contrasting responses and behaviors to water stress of riparian trees along a hydroclimatic gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175916. [PMID: 39226962 DOI: 10.1016/j.scitotenv.2024.175916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Riparian trees are particularly vulnerable to drought because they are highly dependent on water availability for their survival. However, the response of riparian tree species to water stress varies depending on regional hydroclimatic conditions, making them unevenly vulnerable to changing drought patterns. Understanding this spatial variability in stress responses requires a comprehensive assessment of water stress across broader spatial and temporal scales. Yet, the precise ecophysiological mechanisms underlying these responses remain poorly linked to remotely sensed indices. To address this gap, the implementation of remote sensing methods coupled with in situ validation is essential to obtain consistent results across diverse spatial and temporal contexts. We conducted a multi-tool analysis combining multispectral and thermal remote sensing indices with in situ ecophysiological measurements at different temporal scales to analyze the responses of white poplar (Populus alba) to seasonal changes in drought along a hydroclimatic gradient. Using this approach, we demonstrate that white poplars along the Rhône River (France) exhibit contrasting responses and behaviors during drought depending on the latitudinal context. White poplars in a Mediterranean climate show rapid stomatal closure to reduce water loss and maintain high minimum water potential levels, although this results in a decrease in remotely sensed greenness. Conversely, white poplars located upstream in a temperate climate show high transpiration and stable greenness but lower minimum water potential and water content. A site in the middle of the gradient has intermediate responses. These results demonstrate that white poplars along a climate gradient can have a range of responses to drought along the iso/anisohydricity continuum. These results are important for future climatic conditions because they show that the same species can have different mechanisms of drought resilience, even in the same river valley. This raises questions regarding how these riparian tree populations will respond to future climatic and hydrological conditions.
Collapse
Affiliation(s)
- Pierre Lochin
- ENS de Lyon, UMR 5600 Environnement Ville société, CNRS, Lyon, France.
| | - Pauline Malherbe
- ENS de Lyon, UMR 5600 Environnement Ville société, CNRS, Lyon, France
| | - Baptiste Marteau
- ENS de Lyon, UMR 5600 Environnement Ville société, CNRS, Lyon, France; LETG UMR 6554, Université Rennes 2, Rennes, France
| | - Julien Godfroy
- ENS de Lyon, UMR 5600 Environnement Ville société, CNRS, Lyon, France; Univ. Grenoble Alpes, INRAE, LESSEM, F-38402 St-Martin d'Hères, France
| | - Flavie Gerle
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - John Marshall
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic; Leibniz-Zentrum für Agrarlandschaftsforschung, 15374 Müncheberg, Germany; Department of Geological Sciences, Gothenburg University, Gothenburg, Sweden
| | - Sara Puijalon
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - Michael Bliss Singer
- Earth Research Institute, University of California, Santa Barbara, CA 93106, USA; Water Research Institute, Cardiff University, Cardiff CF10 3AX, UK; School of Earth and Environmental Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - John C Stella
- Department of Sustainable Resources Management, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Hervé Piégay
- ENS de Lyon, UMR 5600 Environnement Ville société, CNRS, Lyon, France
| | - Antoine Vernay
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| |
Collapse
|
3
|
Fan R, Huang Y, Liu W, Jiang S, Ji W. Dauciform roots affect the position of the neighboring plants on the economic spectrum in degraded alpine meadows. FRONTIERS IN PLANT SCIENCE 2023; 14:1277013. [PMID: 37936938 PMCID: PMC10627033 DOI: 10.3389/fpls.2023.1277013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Background and aims Special root structures that can dissolve insoluble phosphorus locked in soil are supposed to contribute not only to the growing status of themselves but also to the neighbouring plants. However, whether dauciform roots have any effect on the neighbouring plants and how does it respond to meadow degradation had not been studied. Methods Alpine meadows with different degradation statuses were selected and the functional traits of Carex filispica and the co-occurring species Polygonum viviparum were measured to explore their response to degradation, as well as the response of Polygonum viviparum to the dauciform roots of Carex filispica. Results The results showed that 1) the number of dauciform roots decreased with the intensifying degradation, positively related to available phosphorus in the soil and negatively related to the aboveground phosphorus of Carex filispica. 2) Carex filispica and Polygonum viviparum are similar in specific leaf area and specific root area, yet different in the phosphorus content. The available phosphorus in the soil was negatively related to the aboveground phosphorus of Carex filispica and positively related to that of Polygonum viviparum. 3) When lightly degraded, the proportion of dauciform roots had positive effects on the aboveground resource-acquiring traits of Polygonum viviparum, which were no longer significant at heavy degradation. 4) Polygonum viviparum and Carex filispica without dauciform roots have similar performance: a decrease of belowground carbon with the increasing degradation, and a trend toward resource conservation with the increasing proportion of dauciform roots, which did not exist in Carex filispica with dauciform roots. Conclusion Our study found that dauciform roots had a beneficial effect on the resource acquisition of their neighbouring plants. However, due to the uncontrollable nature of natural habitats, whether this effect is stable and strong enough to be performed in ecological restoration requires further lab-controlled studies.
Collapse
Affiliation(s)
| | | | | | | | - Wenli Ji
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Barou V, Rincón A, Calvet C, Camprubí A, Parladé J. Aromatic Plants and Their Associated Arbuscular Mycorrhizal Fungi Outcompete Tuber melanosporum in Compatibility Assays with Truffle-Oaks. BIOLOGY 2023; 12:biology12040628. [PMID: 37106828 PMCID: PMC10136101 DOI: 10.3390/biology12040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
The high value of black truffle recompenses the slow growth of the fungus when established in the field. Adding a secondary crop, such as medicinal and aromatic plants (MAPs), could further enhance the sustainability of truffle production agro-forest systems. The dual cultures of ectomycorrhizal truffle-oak seedlings and MAPs (lavender, thyme, and sage) previously inoculated and non-inoculated with native arbuscular mycorrhizal fungi (AMF), were established to evaluate plant-fungi relationships. After 12 months in a shadehouse, plants' growth, mycorrhizal colonization, and extraradical soil mycelium (both of Tuber melanosporum and AMF) were measured. Overall, truffle-oaks' growth was negatively affected by the presence of MAPs, especially when inoculated with AMF. In turn, the presence of truffle-oaks barely affected the co-cultured MAPs, and only lavenders showed a significant growth reduction. All AMF-inoculated MAPs showed higher shoot and root biomass than non-inoculated ones. Compared to truffle-oaks growing alone, the presence of co-cultured MAPs, especially when they were AMF-inoculated, significantly decreased both the ectomycorrhizas and soil mycelium of T. melanosporum. These results reveal the strong competition between AMF and T. melanosporum and warn about the need for the protection of intercropping plants and their associated symbiotic fungi to avoid reciprocal counterproductive effects in mixed truffle-oak-AMF-MAP plantations.
Collapse
Affiliation(s)
- Vasiliki Barou
- Centre de Cabrils, Institut de Recerca i Tecnologia Agroalimentàries, IRTA, Ctra. Cabrils km. 2, E-08348 Cabrils, Spain
| | - Ana Rincón
- Instituto de Ciencias Agrarias, ICA-CSIC, C/Serrano 115 dpdo., E-28006 Madrid, Spain
| | - Cinta Calvet
- Centre de Cabrils, Institut de Recerca i Tecnologia Agroalimentàries, IRTA, Ctra. Cabrils km. 2, E-08348 Cabrils, Spain
| | - Amelia Camprubí
- Centre de Cabrils, Institut de Recerca i Tecnologia Agroalimentàries, IRTA, Ctra. Cabrils km. 2, E-08348 Cabrils, Spain
| | - Javier Parladé
- Centre de Cabrils, Institut de Recerca i Tecnologia Agroalimentàries, IRTA, Ctra. Cabrils km. 2, E-08348 Cabrils, Spain
| |
Collapse
|
5
|
Pepe M, Gratani L, Crescente MF, Puglielli G, Varone L. Daily Temperature Effect on Seedling Growth Dynamic of Three Invasive Alien Species. FRONTIERS IN PLANT SCIENCE 2022; 13:837449. [PMID: 35401595 PMCID: PMC8990299 DOI: 10.3389/fpls.2022.837449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
A greater relative growth rate (RGR) is positively correlated with a species' ability to deploy a larger leaf area either due to a greater total number of leaves (LN) in the canopy or due to an average size of individual leaves (LA). This study aimed to analyze and compare, (1) the temporal (i.e., daily) RGR, leaf production rate (LPR), and leaf area production rate (LAPR) changes during the early growth stages of three among the most invasive species in the world, namely, Ailanthus altissima, Phytolacca americana, and Robinia pseudoacacia. (2) the interspecific differences in the relationship between RGR, LPR, LAPR, and mean daily air temperature. Our results show that growth dynamics as a function of temperature differ between invasive alien species (IAS). While these differences are partly explained by differences due to the growth form of the investigated species, the three IAS have a different behavior to adjust RGR, LPR, and LAPR with air temperature changes even within the same growth form, and in agreement with species habitat requirements in their native range. In conclusion, the results help disentangle the relative role of RGR, LPR, and LAPR in defining non-native species growth responses to mean daily air temperature also in relation to a species' growth form.
Collapse
Affiliation(s)
- Maria Pepe
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Loretta Gratani
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | | | - Giacomo Puglielli
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Laura Varone
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Ren L, Huang Y, Pan Y, Xiang X, Huo J, Meng D, Wang Y, Yu C. Differential Investment Strategies in Leaf Economic Traits Across Climate Regions Worldwide. FRONTIERS IN PLANT SCIENCE 2022; 13:798035. [PMID: 35356106 PMCID: PMC8959930 DOI: 10.3389/fpls.2022.798035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The leaf economics spectrum (LES) is the leading theory of plant ecological strategies based on functional traits, which explains the trade-off between dry matter investment in leaf structure and the potential rate of resource return, revealing general patterns of leaf economic traits investment for different plant growth types, functional types, or biomes. Prior work has revealed the moderating role of different environmental factors on the LES, but whether the leaf trait bivariate relationships are shifted across climate regions or across continental scales requires further verification. Here we use the Köppen-Geiger climate classification, a very widely used and robust criterion, as a basis for classifying climate regions to explore climatic differences in leaf trait relationships. We compiled five leaf economic traits from a global dataset, including leaf dry matter content (LDMC), specific leaf area (SLA), photosynthesis per unit of leaf dry mass (Amass), leaf nitrogen concentration (Nmass), and leaf phosphorus concentration (Pmass). Moreover, we primarily used the standardized major axis (SMA) analysis to establish leaf trait bivariate relationships and to explore differences in trait relationships across climate regions as well as intercontinental differences within the same climate type. Leaf trait relationships were significantly correlated across almost all subgroups (P < 0.001). However, there was no common slope among different climate zones or climate types and the slopes of the groups fluctuated sharply up and down from the global estimates. The range of variation in the SMA slope of each leaf relationship was as follows: LDMC-SLA relationships (from -0.84 to -0.41); Amass-SLA relationships (from 0.83 to 1.97); Amass-Nmass relationships (from 1.33 to 2.25); Nmass-Pmass relationships (from 0.57 to 1.02). In addition, there was significant slope heterogeneity among continents within the Steppe climate (BS) or the Temperate humid climate (Cf). The shifts of leaf trait relationships in different climate regions provide evidence for environmentally driven differential plant investment in leaf economic traits. Understanding these differences helps to better calibrate various plant-climate models and reminds us that smaller-scale studies may need to be carefully compared with global studies.
Collapse
Affiliation(s)
- Liang Ren
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yongmei Huang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yingping Pan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Xiang Xiang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Jiaxuan Huo
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Dehui Meng
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yuanyuan Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Cheng Yu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
Yang Y, Kang L, Zhao J, Qi N, Li R, Wen Z, Kassout J, Peng C, Lin G, Zheng H. Quantifying Leaf Trait Covariations and Their Relationships with Plant Adaptation Strategies along an Aridity Gradient. BIOLOGY 2021; 10:biology10101066. [PMID: 34681167 PMCID: PMC8533430 DOI: 10.3390/biology10101066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Plants usually adopt different strategies to adapt to their surrounding environments. Accurately quantifying plant strategies is of great interest in trait-based ecology, in particular to understand the responses of ecological structures and processes. In the last two decades, these strategies have been described qualitatively; however, the use of quantitative methods is still lacking. In this study, we used a plant functional trait approach to discuss plant strategies along an aridity gradient. We found that eight functional traits divided into four dimensions represent four adaptation strategies: energy balance, resource acquisition, resource investment and water use efficiency. We also concluded that climate and soil together with family (vegetation succession) were the main driving forces of trait covariations. Our study provided a new perspective to understand plant functional responses to aridity gradients, which is helpful for ecological management and vegetation restoration programs in arid regions. Abstract A trait-based approach is an effective way to quantify plant adaptation strategies in response to changing environments. Single trait variations have been well depicted before; however, multi-trait covariations and their roles in shaping plant adaptation strategies along aridity gradients remain unclear. The purpose of this study was to reveal multi-trait covariation characteristics, their controls and their relevance to plant adaptation strategies. Using eight relevant plant functional traits and multivariate statistical approaches, we found the following: (1) the eight studied traits show evident covariation characteristics and could be grouped into four functional dimensions linked to plant strategies, namely energy balance, resource acquisition, resource investment and water use efficiency; (2) leaf area (LA) together with traits related to the leaf economic spectrum, including leaf nitrogen content per area (Narea), leaf nitrogen per mass (Nmass) and leaf dry mass per area (LMA), covaried along the aridity gradient (represented by the moisture index, MI) and dominated the trait–environmental change axis; (3) together, climate, soil and family can explain 50.4% of trait covariations; thus, vegetation succession along the aridity gradient cannot be neglected in trait covariations. Our findings provide novel perspectives toward a better understanding of plant adaptations to arid conditions and serve as a reference for vegetation restoration and management programs in arid regions.
Collapse
Affiliation(s)
- Yanzheng Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (Y.Y.); (R.L.)
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China;
| | - Le Kang
- East China Inventory and Planning Institute of the State Administration of Forestry and Grassland, Hangzhou 310019, China;
| | - Jun Zhao
- China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, Beijing 100083, China;
| | - Ning Qi
- School of Information Science & Technology, Beijing Forestry University, Beijing 100083, China;
| | - Ruonan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (Y.Y.); (R.L.)
| | - Zhongming Wen
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China;
| | - Jalal Kassout
- Laboratory of Applied Botany, BioAgrodiversity Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93002, Morocco;
| | - Changhui Peng
- Department of Biological Sciences, Institute of Environmental Sciences, University of Quebec at Montreal, Montréal, QC H3C 3P8, Canada;
| | - Guanghui Lin
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China;
| | - Hua Zheng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (Y.Y.); (R.L.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-010-62849134
| |
Collapse
|