1
|
Wan J, Zhang Z, Li P, Ma Y, Li H, Guo Q, Wang Y, Dagot C. Simultaneous nitrogen and phosphorus removal through an integrated partial-denitrification/anammox process in a single UAFB system. CHEMOSPHERE 2024; 350:141040. [PMID: 38145846 DOI: 10.1016/j.chemosphere.2023.141040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023]
Abstract
With the aim of obtaining enhanced nitrogen removal and phosphate recovery in mainstream sewage, we examined an integrated partial-denitrification/anaerobic ammonia oxidation (PD/A) process over a period of 189 days to accomplish this goal. An up-flow anaerobic fixed-bed reactor (UAFB) used in the integrated PD/A process was started up with anammox sludge inoculated and the influent composition controlled. Results showed that the system achieved a phosphorus removal efficiency of 82% when the influent concentration reached 12.0 mg/L. Batch tests demonstrated that stable and efficient removal of chemical oxygen demand (COD), nitrogen, and phosphorus was achieved at a COD/NO3--N ratio of 3.5. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis indicated that hydroxyapatite was the main crystal in the biofilm. Furthermore, substrate variation along the axial length of UAFB indicated that partial denitrification and anammox primarily took place near the reactor's bottom. According to a microbiological examination, 0.4% of the PD/A process's microorganisms were anaerobic ammonia oxidizing bacteria (AnAOB). Ca. Brocadia, Ca. Kuenenia, and Ca. Jettenia served as the principal AnAOB generals in the system. Thauera, Candidatus Accumulibacter, Pseudomonas, and Acinetobacter, which together accounted for 27% of the denitrifying and phosphorus-accumulating bacteria, were helpful in advanced nutrient removal. Therefore, the combined PD/A process can be a different option in the future for sewage treatment to achieve contemporaneous nutrient removal.
Collapse
Affiliation(s)
- Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou, 450001, PR China.
| | - Zixuan Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Pei Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yifei Ma
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Haisong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou, 450001, PR China
| | - Qiong Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou, 450001, PR China.
| | - Yan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou, 450001, PR China
| | - Christophe Dagot
- GRESE EA 4330, Université de Limoges, 123 Avenue Albert Thomas, F-87060, Limoges, Cedex, France; INSERM, U1092, Limoges, France
| |
Collapse
|
2
|
Zhang S, Li C, Lv H, Cui B, Zhou D. Anammox activity improved significantly by the cross-fed NO from ammonia-oxidizing bacteria and denitrifying bacteria to anammox bacteria. WATER RESEARCH 2024; 249:120986. [PMID: 38086204 DOI: 10.1016/j.watres.2023.120986] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Nitric oxide (NO) has been suggested as an obligate intermediate in anaerobic ammonium oxidation (anammox), nitrification and denitrification. At the same time, ammonia-oxidizing bacteria (AOB) and denitrifying bacteria (DNB) are always existed in anammox flora, so what is the role of NO produced from AOB and DNB? Could it accelerate nitrogen removal via the anammox pathway with NO as an electron acceptor? To investigate this hypothesis, nitrogen transforming of an anammox biofilter was analyzed, functional gene expression of anammox bacteria (AnAOB), AOB and DNB were compared, and NO source was verified. For anammox biofilter, anammox contributed to 91.3 % nitrogen removal with only 14.4 % of AnAOB being enriched, while DNB was dominant. Meta-omics analysis and batch test results indicated that AOB could provide NO to AnAOB, and DNB also produced NO via up-regulating nirS/K and down-regulating nor. The activation of the anammox pathway of NH4++NO→N2 caused the downregulation of nirS and nxr in Ca. Kuenenia stuttgartiensis. Additionally, changes in nitrogen transforming pathways affected the electron generation and transport, limiting the carbon metabolism of AnAOB. This study provided new insights into improving nitrogen removal of the anammox system.
Collapse
Affiliation(s)
- Sixin Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Chunrui Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Han Lv
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Bin Cui
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
3
|
Ma B, Liang Y, Zhang Y, Wei Y. Achieving advanced nitrogen removal from low-carbon municipal wastewater using partial-nitrification/anammox and endogenous partial-denitrification/anammox. BIORESOURCE TECHNOLOGY 2023:129227. [PMID: 37244313 DOI: 10.1016/j.biortech.2023.129227] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
To achieve advanced nitrogen removal from low-carbon wastewater, a partial-nitrification/anammox and endogenous partial-denitrification/ anammox (PN/A-EPD/A) process was developed in a sequential batch biofilm reactor (SBBR). Advanced nitrogen was achieved with the effluent total nitrogen (TN) of 3.29 mg/L when the influent COD/TN and the TN were 2.86 and 59.59 mg/L, respectively. This was attributed to a stable PN/A-EPD/A, which was achieved through the integration of four strategies, including treating the inoculated sludge with free nitrous acid, inoculating anammox biofilm, discharging excess activated sludge and residual ammonium at the end of oxic stage. The 16S rRNA high-throughput sequencing results demonstrated that anammox bacteria coexisted with ammonia oxidizing bacteria, nitrite oxidizing bacteria, denitrifying glycogen accumulating organisms (DGAOs) and denitrifying phosphorus accumulating organisms (DPAOs) in biofilms. The abundance of anammox bacteria in the inner layer of the biofilm is higher, while that of DGAOs and DPAOs is higher in the outer layer.
Collapse
Affiliation(s)
- Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Yanbing Liang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Yujian Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Yan Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Hong S, Winkler MKH, Wang Z, Goel R. Integration of EBPR with mainstream anammox process to treat real municipal wastewater: Process performance and microbiology. WATER RESEARCH 2023; 233:119758. [PMID: 36812815 DOI: 10.1016/j.watres.2023.119758] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The mainstream application of anaerobic ammonium oxidation (anammox) for sustainable N removal remains a challenge. Similarly, with recent additional stringent regulations for P discharges, it is imperative to integrate N with P removal. This research studied integrated fixed film activated sludge (IFAS) technology to simultaneously remove N and P in real municipal wastewater by combining biofilm anammox with flocculent activated sludge for enhanced biological P removal (EBPR). This technology was assessed in a sequencing batch reactor (SBR) operated as a conventional A2O (anaerobic-anoxic-oxic) process with a hydraulic retention time of 8.8 h. After a steady state operation was reached, robust reactor performance was obtained with average TIN and P removal efficiencies of 91.3 ± 4.1% and 98.4 ± 2.4%, respectively. The average TIN removal rate recorded over the last 100 d of reactor operation was 118 mg/L·d, which is a reasonable number for mainstream applications. The activity of denitrifying polyphosphate accumulating organisms (DPAOs) accounted for nearly 15.9% of P-uptake during the anoxic phase. DPAOs and canonical denitrifiers removed approximately 5.9 mg TIN/L in the anoxic phase. Batch activity assays, which showed that nearly 44.5% of TIN were removed by the biofilms during the aerobic phase. The functional gene expression data also confirmed anammox activities. The IFAS configuration of the SBR allowed operation at a low solid retention time (SRT) of 5-d without washing out biofilm ammonium-oxidizing and anammox bacteria. The low SRT, combined with low dissolved oxygen and intermittent aeration, provided a selective pressure to washout nitrite-oxidizing bacteria and glycogen-accumulating organisms, as relative abundances of.
Collapse
Affiliation(s)
- Soklida Hong
- Department of Civil and Environmental Engineering, University of Utah, 110 S Central Campus Drive, Salt Lake City, UT 84112, USA.
| | - Mari-K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, 616 Northlake Place, Seattle, WA 98195, USA.
| | - Zhiwu Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA 20110, USA.
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, 110 S Central Campus Drive, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Lu X, Duan H, Oehmen A, Carvalho G, Yuan Z, Ye L. Achieving combined biological short-cut nitrogen and phosphorus removal in a one sludge system with side-stream sludge treatment. WATER RESEARCH 2021; 203:117563. [PMID: 34419918 DOI: 10.1016/j.watres.2021.117563] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Biological nitrogen (N) removal via the short-cut pathway (NH4+-N→NO2--N→N2) is economically attractive in wastewater treatment plants (WWTPs). However, biological phosphorus (P) removal processes remain a bottleneck in these systems due to the strong inhibitory effect of nitrite or its protonated form (HNO2, free nitrous acid - FNA) on polyphosphate accumulating organisms (PAOs). In this study, a novel combined nitrogen and phosphorus removal strategy was verified and achieved in a biological short-cut nitrogen removal system via side-stream sludge treatment with FNA, and the mechanisms impacting this process were investigated. The side-stream FNA treatment process applied here led to a significant reduction in the real sludge retention time (SRT) in the mainstream (approximately 2.7 days) based on the biocidal effect of FNA to the majority of the organisms. This work also found that around 40% of the P uptake activity was still maintained at a much higher FNA level of 38 μg N/L with potential PAOs, which highly broadened the current knowledge of PAOs community. An economic analysis revealed advantages of the proposed as compared to conventional biological nitrogen and phosphorus removal (13% savings in total cost), biological short-cut nitrogen removal (via FNA treatment) with chemical phosphorus precipitation (21% savings) and conventional biological nitrogen removal with chemical precipitation (27% savings). Overall, this study presents a novel and viable retrofit strategy in integrating biological short-cut nitrogen removal with EBPR for next generation WWTPs.
Collapse
Affiliation(s)
- Xuanyu Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|