1
|
Zhang J, Wang S, Wang X, Jiao W, Zhang M, Ma F. A review of functions and mechanisms of clay soil conditioners and catalysts in thermal remediation compared to emerging photo-thermal catalysis. J Environ Sci (China) 2025; 147:22-35. [PMID: 39003042 DOI: 10.1016/j.jes.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 07/15/2024]
Abstract
High temperatures and providing sufficient time for the thermal desorption of persistent organic pollutants (POPs) from contaminated clay soils can lead to intensive energy consumption. Therefore, this article provides a critical review of the potential additives which can improve soil texture and increase the volatility of POPs, and then discusses their enhanced mechanisms for contributing to a green economy. Ca-based additives have been used to reduce plasticity of bentonite clay, absorb water and replenish system heat. In contrast, non-Ca-based additives have been used to decrease the plasticity of kaolin clay. The soil structure and soil plasticity can be changed through cation exchange and flocculation processes. The transition metal oxides and alkali metal oxides can be applied to catalyze and oxidize polycyclic aromatic hydrocarbons, petroleum and emerging contaminants. In this system, reactive oxygen species (•O2- and •OH) are generated from thermal excitation without strong chemical oxidants. Moreover, multiple active ingredients in recycled solid wastes can be controlled to reduce soil plasticity and enhance thermal catalysis. Alternatively, the alkali, nano zero-valent iron and nano-TiN can catalyze hydrodechlorination of POPs under reductive conditions. Especially, photo and photo-thermal catalysis are discussed to accelerate replacement of fossil fuels by renewable energy in thermal remediation.
Collapse
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Shuo Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghua Zhang
- College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, USA
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Yang F, Yang K, Wang Y, Yao J, Hua X, Danso B, Wang Y, Liang H, Wang M, Chen J, Chen L, Xiao L, Zhang J. Insights into the discovery and intervention of metalloproteinase in marine hazardous jellyfish. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134526. [PMID: 38704908 DOI: 10.1016/j.jhazmat.2024.134526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The proliferation of toxic organisms caused by changes in the marine environment, coupled with the rising human activities along the coastal lines, has resulted in an increasing number of stinging incidents, posing a serious threat to public health. Here, we evaluated the systemic toxicity of the venom in jellyfish Chrysaora quinquecirrha at both cellular and animal levels, and found that jellyfish tentacle extract (TE) has strong lethality accompanied by abnormal elevation of blood biochemical indicators and pathological changes. Joint analysis of transcriptome and proteome indicated that metalloproteinases are the predominant toxins in jellyfish. Specially, two key metalloproteinases DN6695_c0_g3 and DN8184_c0_g7 were identified by mass spectrometry of the red blood cell membrane and tetracycline hydrochloride (Tch) inhibition models. Structurally, molecular docking and kinetic analysis are employed and observed that Tch could inhibit the enzyme activity by binding to the hydrophobic pocket of the catalytic center. In this study, we demonstrated that Tch impedes the metalloproteinase activity thereby reducing the lethal effect of jellyfish, which suggests a potential strategy for combating the health threat of marine toxic jellyfish.
Collapse
Affiliation(s)
- Fengling Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Kai Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Yi Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jinchi Yao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; School of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Xiaoyu Hua
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Blessing Danso
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Yongfang Wang
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Hongyu Liang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Mingke Wang
- Medical Care Center, Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Jingbo Chen
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Jing Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Suo S, Ma W, Zhang S, Han Z, Wang Y, Li Y, Xiong Y, Liu Y, He C, Fang P. MOF-Derived Spindle-Shaped Z-Scheme ZnO/ZnFe 2O 4 Heterojunction: A Magnetic Recovery Catalyst for Efficient Photothermal Degradation of Tetracycline Hydrochloride. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6639. [PMID: 37895621 PMCID: PMC10608245 DOI: 10.3390/ma16206639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
The development of photocatalysts with a wide spectral response and effective carrier separation capability is essential for the green degradation of tetracycline hydrochloride. In this study, a magnetic recyclable Z-scheme ZnO/ZnFe2O4 heterojunction (ZZF) was successfully constructed via the solid phase method, using MIL-88A(Fe)@Zn as the precursor. An appropriate band gap width and Z-scheme charge transfer mechanism provide ZZF with excellent visible light absorption performance, efficient charge separation, and a strong redox ability. Under visible light irradiation, the degradation efficiency of tetracycline hydrochloride for the optimal sample can reach 86.3% within 75 min in deionized water and 92.9% within 60 min in tap water, exhibiting superior stability and reusability after five cycles. Moreover, the catalyst in the water can be conveniently recovered by magnetic force. After visible light irradiation for 70 min, the temperature of the reaction system increased by 21.9 °C. Its degradation constant (35.53 × 10-3 min-1) increased to 5.1 times that at room temperature (6.95 × 10-3 min-1). Using thermal energy enhances the kinetic driving force of the reactants and facilitates carrier migration, meaning that more charge is available for the production of •O2- and •OH. This study provides a potential candidate for the efficient degradation of tetracycline hydrochloride by combining thermal catalysis with a photocatalytic heterojunction.
Collapse
Affiliation(s)
- Shilong Suo
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (S.S.)
| | - Wenmei Ma
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (S.S.)
| | - Siyi Zhang
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (S.S.)
| | - Ziwu Han
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (S.S.)
| | - Yumin Wang
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (S.S.)
| | - Yuanyuan Li
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (S.S.)
| | - Yi Xiong
- Department of Microelectronics, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Yong Liu
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (S.S.)
| | - Chunqing He
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (S.S.)
| | - Pengfei Fang
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (S.S.)
| |
Collapse
|
4
|
Huang Z, Cai X, Zang S, Li Y, Zheng D, Li F. Strong Metal Support Effect of Pt/g-C 3N 4 Photocatalysts for Boosting Photothermal Synergistic Degradation of Benzene. Int J Mol Sci 2023; 24:ijms24076872. [PMID: 37047845 PMCID: PMC10095204 DOI: 10.3390/ijms24076872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Catalysis is the most efficient and economical method for treating volatile organic pollutants (VOCs). Among the many materials that are used in engineering, platinized carbon nitride (Pt/g-C3N4) is an efficient and multifunctional catalyst which has strong light absorption and mass transfer capabilities, which enable it to be used in photocatalysis, thermal catalysis and photothermal synergistic catalysis for the degradation of benzene. In this work, Pt/g-C3N4 was prepared by four precursors for the photothermal synergistic catalytic degradation of benzene, which show different activities, and many tests were carried out to explore the possible reasons for the discrepancy. Among them, the Pt/g-C3N4 prepared from dicyanamide showed the highest activity and could convert benzene (300 ppm, 20 mL·min-1) completely at 162 °C under solar light and 173 °C under visible light. The reaction temperature was reduced by nearly half compared to the traditional thermal catalytic degradation of benzene at about 300 °C.
Collapse
Affiliation(s)
- Zhongcheng Huang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaorong Cai
- Institute of Innovation and Application, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shaohong Zang
- Institute of Innovation and Application, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
- Donghai Laboratory, Zhoushan 316021, China
| | - Yixin Li
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Dandan Zheng
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Fuying Li
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
5
|
Xu N, Hu C, Zhu Z, Wang W, Peng H, Liu B. Establishment of a novel system for photothermal removal of ampicillin under near-infrared irradiation: Persulfate activation, mechanism, pathways and bio-toxicology. J Colloid Interface Sci 2023; 640:472-486. [PMID: 36871512 DOI: 10.1016/j.jcis.2023.02.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
One of the most effective ways to address the problems of low solar spectrum utilization in photocatalysis and the high cost of persulfate activation technology is to create a cost-effective synergistic photothermal persulfate system. In this work, a brand-new composite catalyst called ZnFe2O4/Fe3O4@MWCNTs (ZFC) was developed to activate PDS (K2S2O8) from the aforementioned basis. ZFC's surface temperature could unbelievably reach 120.6 °C in 150 s together with the degrading synergistic system solution temperature could reach 48 °C under near-infrared light (NIR) in 30 min, thus accelerating the ZFC/PDS decolorization rate for reactive blue KN-R (150 mg/L) to 95% in 60 min. Furthermore, the ZFC's ferromagnetism bore it with good cycling performance, allowing it to maintain an 85% decolorization rate even after 5 cycles with OH·, SO4-·, 1O2, and O2-· dominating the degrading process. In the meantime, the DFT calculations of the kinetic constants for the entire process of S2O82- adsorption on Fe3O4 in dye degradation solution were in agreement with the outcomes of the experimental pseudo-first-order kinetic fitting. By analyzing the particular degradation route of ampicillin (50 mg/L) and the possible environmental impact of the intermediate using LC-MS and the toxicological analysis software (T.E.S.T.), respectively, it was shown that this system might function as an environmentally friendly method for removing antibiotics. This work may provide some productive research lines for the creation of a photothermal persulfate synergistic system and suggest fresh approaches to water treatment technology.
Collapse
Affiliation(s)
- Nan Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile &Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Huitao Peng
- ANTA (China) Co. Ltd., Jinjiang 362212, China.
| | - Baojiang Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
6
|
Zhang ZY, Li T, Yao JL, Xie T, Xiao Q. Mechanism and kinetic characteristics of photo-thermal dry reforming of methane on Pt/mesoporous-TiO2 catalyst. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Liu Y, Huang R, Hu W, Lin L, Liu J, Wang Q, Wang D, Wu Z, Zhang J. High-performance photothermal conversion of sludge derived biochar and its potential for peroxydisulfate-based advanced oxidation processes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Ding J, Wang L, Ma YL, Sun YG, Zhu YB, Wang LQ, Li YY, Ji WX. Synergistically boosted non-radical catalytic oxidation by encapsulating Fe3O4 nanocluster into hollow multi-porous carbon octahedra with emphasise on interfacial engineering. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Jia F, Zhao D, Shu M, Sun F, Wang D, Chen C, Deng Y, Zhu X. Co-doped Fe-MIL-100 as an adsorbent for tetracycline removal from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55026-55038. [PMID: 35307798 DOI: 10.1007/s11356-022-19684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In the study, Fe-MIL-100 was modified by adding Co2+ in the synthesis process; Co/Fe-MIL-100 was successfully synthesized and used to adsorb tetracycline. The addition of Co2+ increased the thermal stability of Fe-MIL-100 without changing the crystal structure. It was found that Co/Fe-MIL-100 exhibited satisfactory performance in tetracycline removal, the tetracycline removal efficiency reached almost 100% in the initial concentration range of 10-40 mg/L, and it still reached 82.38% under the condition of 60 mg/L tetracycline. Besides, the factors of tetracycline concentration, pH and inorganic anion on removal efficiency were explored. The coexistence of inorganic anion decreased the adsorption capacity of tetracycline due to the competitive adsorption. CO32- had a more obvious inhibition effect on the adsorption efficiency of tetracycline than Cl-. The fitting correlation coefficient of Langmuir model was higher and the kinetics better fitted by pseudo-second-order, respectively. As a result of its high removal efficiency and excellent recycling performance, it has great potential in application fields such as removing tetracycline from wastewater.
Collapse
Affiliation(s)
- Feiyue Jia
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Donghua Zhao
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Mengzhao Shu
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Feifei Sun
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China.
| | - Chen Chen
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Yu Deng
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Xiaoming Zhu
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| |
Collapse
|
10
|
Sun Y, Xiong R, Zhang J, Ma Y, Li Y, Ji W, Ma Y, Wang Z. Insight into synergetic mechanism of CuyMn5-yOx/hG-activated peroxydisulfate enhances tetracycline antibiotics degradation and toxicity assessment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Huang J, Shen J, Zhang G, Guo Y, Zheng X. Visible-light-driven 3D Bi 5O 7I/BiOCl microsphere with enhanced photocatalytic capability: Performance, degradation pathway, antibacterium and mechanism. CHEMOSPHERE 2022; 299:134482. [PMID: 35378169 DOI: 10.1016/j.chemosphere.2022.134482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
It is well known that both of the separation efficiency of photogenerated carriers and the response capability to visible light remarkably affect the photocatalytic performance. In the present work, a 3D microsphere of Bi5O7I/BiOCl heterojunction catalyst was synthetised. The synergy of Bi5O7I and BiOCl not only significantly enhances the transfer rate and separation efficiency of carriers, but also heightens light absorption capacity. As-prepared Bi5O7I/BiOCl (40 wt% BiOCl) has a higher degradation efficiency on doxycycline hydrochloride (DC) (90 min, 83.0%) and super high inhibition rate (90 min, 99.92%) on Escherichia coli under visible light, compared to the two monomers. Pollutants DC is finally decomposed into CO2, H2O and small molecule intermediates by generated h+, •OH and •O2-. The effects of reactive radicals follow the order of •OH radicals > h+ radicals ≫ •O2- and e- radicals. The possible structures of intermediates and four possible degradation pathways involved were also discussed. In addition, As-synthetised Bi5O7I/BiOCl has preferable reusability and excellent chemical stability. Biological toxicity experiments also verify that Bi5O7I/BiOCl is a green and environmentally friendly composite material. This strategy provides a green, low-toxic way for the application of traditional type II heterojunction in the fields of environmental remediation and photocatalysis.
Collapse
Affiliation(s)
- Jialun Huang
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jingtao Shen
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ganwei Zhang
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yongfu Guo
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, Jiangsu, China.
| | - Xinyu Zheng
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
12
|
Barai DP, Bhanvase BA, Żyła G. Experimental Investigation of Thermal Conductivity of Water-Based Fe 3O 4 Nanofluid: An Effect of Ultrasonication Time. NANOMATERIALS 2022; 12:nano12121961. [PMID: 35745300 PMCID: PMC9227490 DOI: 10.3390/nano12121961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 01/09/2023]
Abstract
Nanofluid preparation is a crucial step in view of their thermophysical properties as well as the intended application. This work investigates the influence of ultrasonication duration on the thermal conductivity of Fe3O4 nanofluid. In this work, water-based Fe3O4 nanofluids of various volume concentrations (0.01 and 0.025 vol.%) were prepared and the effect of ultrasonication time (10 to 55 min) on their thermal conductivity was investigated. Ultrasonication, up to a time duration of 40 min, was found to raise the thermal conductivity of Fe3O4 nanofluids, after which it starts to deteriorate. For a nanofluid with a concentration of 0.025 vol.%, the thermal conductivity increased to 0.782 W m-1K-1 from 0.717 W m-1K-1 as the ultrasonication time increased from 10 min to 40 min; however, it further deteriorated to 0.745 W m-1K-1 after a further 15 min increase (up to a total of 55 min) in ultrasonication duration. Thermal conductivity is a strong function of concentration of the nanofluid; however, the optimum ultrasonication time is the same for different nanofluid concentrations.
Collapse
Affiliation(s)
- Divya P. Barai
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MS, India;
| | - Bharat A. Bhanvase
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MS, India;
- Correspondence: (B.A.B.); (G.Ż.)
| | - Gaweł Żyła
- Department of Physics and Medical Engineering, Rzeszów University of Technology, 35-959 Rzeszów, Poland
- Correspondence: (B.A.B.); (G.Ż.)
| |
Collapse
|
13
|
Fang S, Hu YH. Thermo-photo catalysis: a whole greater than the sum of its parts. Chem Soc Rev 2022; 51:3609-3647. [PMID: 35419581 DOI: 10.1039/d1cs00782c] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermo-photo catalysis, which is the catalysis with the participation of both thermal and photo energies, not only reduces the large energy consumption of thermal catalysis but also addresses the low efficiency of photocatalysis. As a whole greater than the sum of its parts, thermo-photo catalysis has been proven as an effective and promising technology to drive chemical reactions. In this review, we first clarify the definition (beyond photo-thermal catalysis and plasmonic catalysis), classification, and principles of thermo-photo catalysis and then reveal its superiority over individual thermal catalysis and photocatalysis. After elucidating the design principles and strategies toward highly efficient thermo-photo catalytic systems, an ample discussion on the synergetic effects of thermal and photo energies is provided from two perspectives, namely, the promotion of photocatalysis by thermal energy and the promotion of thermal catalysis by photo energy. Subsequently, state-of-the-art techniques applied to explore thermo-photo catalytic mechanisms are reviewed, followed by a summary on the broad applications of thermo-photo catalysis and its energy management toward industrialization. In the end, current challenges and potential research directions related to thermo-photo catalysis are outlined.
Collapse
Affiliation(s)
- Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA.
| |
Collapse
|
14
|
Lu Y, Zhang H, Fan D, Chen Z, Yang X. Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127128. [PMID: 34534804 DOI: 10.1016/j.jhazmat.2021.127128] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Effectively harnessing renewable and inexhaustible solar radiation for energy conversion has attracted significant research interest in the past decade. Solar thermal conversion, as a ubiquitous phenomenon, can be implemented to evaporate water and concurrently boost photocatalytic performance for addressing freshwater scarcity and energy crisis. Most recently, solar water evaporation accompanied by photocatalytic degradation, sterilization, and hydrogen production has been proposed as a promising avenue to endow new vitality into the field of clean water and energy production. Driven by the advances of rationally designed solar-powered functional materials, a large variety of photothermal-coupled photocatalysis technologies have been exploited. In this context, it is imperative to summarize the recent progress and discuss the challenges in this multidisciplinary field. Herein, we overview photothermal materials based on various fundamental principles and highlight emerging applications in the areas of solar water evaporation, water purification, and solar-driven energy production. Furthermore, the challenges and perspectives toward both fundamental research and practical applications are also proposed. It is envisioned that this review can provide insightful suggestions to further advance the development of integrated solar thermal driven water evaporation and photocatalytic systems to fulfill concurrent energy conversion and environmental applications.
Collapse
Affiliation(s)
- Yi Lu
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Deqi Fan
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zupeng Chen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofei Yang
- College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|