1
|
Zhang H, Li Z, Li X, Peng X, Zhang X, Zhang S, Ge F, Zhang L, Wu Z, Liu B. Host selection and nutrient status jointly drive algal and bacterial interactions in epiphytic biofilms of submerged macrophytes: Structural and functional insights. ENVIRONMENTAL RESEARCH 2025; 279:121743. [PMID: 40311900 DOI: 10.1016/j.envres.2025.121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
Epiphytic biofilms play a crucial role in aquatic biogeochemical cycles but are simultaneously influenced by host selection and eutrophication. However, the compositional structure and interaction mechanisms of these factors on algal and bacterial communities remain poorly understood. In this study, we employed Confocal Laser Scanning Microscopy (CLSM), Scanning Electron Microscopy (SEM), and high-throughput sequencing to investigate the physicochemical properties, algal and bacterial diversity, and community structure of epiphytic biofilms on two submerged macrophytes - Vallisneria natans (VN) and Hydrilla verticillata (HV) - across three urban shallow lakes with varying trophic levels in the Yangtze River Basin. Our results revealed distinct algal and bacterial communities influenced by both host plants and lake nutrient conditions, with unique core species identified in VN, HV, and the surrounding water. Host-environment effects index (HEEI = 1.79) indicated that bacterial communities were predominantly shaped by host selection, exhibiting lower diversity in HV (1.66 ± 0.92) and VN (2.31 ± 1.12) biofilms compared to surrounding waters (3.80 ± 0.47). In contrast, algal communities were primarily regulated by environmental factors (HEEI = 0.43), with higher diversity in less eutrophic lakes. Algal-bacterial co-occurrence network analysis revealed greater network complexity in VN biofilms than that in HV, with predominantly synergistic interactions facilitating carbon and nitrogen cycling. Eutrophication increased biofilm thickness, nutrient content, and extracellular polymeric substance (EPS) production but reduced microbial diversity and altered community interaction patterns. This study advances our understanding of epiphytic biofilms and offers insights into optimizing host-microbe interactions for improving lake restoration strategies.
Collapse
Affiliation(s)
- Haokun Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuxi Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xia Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xue Peng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaowen Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxian Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangjie Ge
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Biyun Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
2
|
Wang S, Yuan Y, Liu F, Liu R, Zhang X, Jiang Y. Coupling Thiosulfate-Driven denitrification and anammox to remove nitrogen from actual wastewater. BIORESOURCE TECHNOLOGY 2025; 417:131840. [PMID: 39561930 DOI: 10.1016/j.biortech.2024.131840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/26/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
A coupled thiosulfate-driven denitrification and anammox (TDDA) process was established to remove nitrogen from wastewater. It was optimized in an up-flow anaerobic sludge blanket reactor using synthetic wastewater, and its reliability was then verified with actual wastewater. The results demonstrated that nitrate, nitrite, and ammonium could be synergistically removed, and the highest total nitrogen removal efficiency reached 97.8% at a loading of 1.39 kgN/(m3·d). Anammox bacteria, primarily Candidatus_Brocadia, were the main contributors to nitrogen removal, while sulfur-oxidizing bacteria such as Thiobacillus and Rhodanobacter played a supportive role. By optimizing substrate conditions to enhance the anammox process, the coupled system attained higher abundances of functional genes such as napA, nirS, hzs, soxXA, and soxYZ, along with the corresponding microbial species. The data suggested that microbial cross-feeding and self-adaptation strategies were key to efficient nitrogen removal by TDDA.
Collapse
Affiliation(s)
- Suqin Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Ying Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Feng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, PR China.
| | - Rundong Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xuezhi Zhang
- Changzhou Comprehensive Transportation Design & Research Co., Ltd., Changzhou, 213004, PR China
| | - Yibing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| |
Collapse
|
3
|
Yang N, Xiong X, Liu M, Jiang X, Lei Y. Revealing the performance of aerotolerant anodes for electroactive nitrification/denitrification and current production under coexistence of oxygen and nitrate conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122588. [PMID: 39299122 DOI: 10.1016/j.jenvman.2024.122588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The coexistence of oxygen and/or nitrate at anode usually affects the biofilm activities of traditional anaerobic anode, thereby deteriorating wastewater treatment performance of microbial fuel cells (MFCs). Improving the aerotolerant responses of anode biofilms is a challenge for field application. In this study, we report that using the electroactive nitrifying/denitrifying inoculum and air-cathode expansion could fabricate the aerotolerant anode biofilms (AAB) under affordable nitrate stress (90 ± 5 mg/L). The highest average removal efficiencies were 99% for chemical oxygen demand (COD), NH4+-N and total nitrogen. The highest average current output of 0.69 mA and power density of 290 mW/m2 were obtained. The average current was confirmed to be reduced 10%-78% but the power density remained almost stable except the quart-air-cathodes MFC by increasing dissolved oxygen concentration with expansion of the air-cathode area. The higher oxygen concentration also contributed to oxidation of ammonium through electroactive autotrophic nitrification. The facultative anaerobic bacteria including Thauera, Microsillaceae, Shinella, Blastocatellaceae, Rhodobacter, Comamonadaceae, Caldilineaceae were enriched, which forms the AAB to remove nitrogen and produce current. Therefore, an easy-to-use method to fabricate AAB is evaluated to realize practical applications of MFCs in wastewater treatment.
Collapse
Affiliation(s)
- Nuan Yang
- MARA Key Laboratory of Development and Application of Rural Renewable Energy, Sichuan Institute of Rural Human Settlements, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), 13 Section 4 South Renmin Rd, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Agricultural Academy of Sciences, 13 Section 4 South Renmin Rd, Chengdu, 610041, China.
| | - Xia Xiong
- MARA Key Laboratory of Development and Application of Rural Renewable Energy, Sichuan Institute of Rural Human Settlements, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), 13 Section 4 South Renmin Rd, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Agricultural Academy of Sciences, 13 Section 4 South Renmin Rd, Chengdu, 610041, China
| | - Ming Liu
- MARA Key Laboratory of Development and Application of Rural Renewable Energy, Sichuan Institute of Rural Human Settlements, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), 13 Section 4 South Renmin Rd, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Agricultural Academy of Sciences, 13 Section 4 South Renmin Rd, Chengdu, 610041, China
| | - Xiaomei Jiang
- MARA Key Laboratory of Development and Application of Rural Renewable Energy, Sichuan Institute of Rural Human Settlements, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), 13 Section 4 South Renmin Rd, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Agricultural Academy of Sciences, 13 Section 4 South Renmin Rd, Chengdu, 610041, China
| | - Yunhui Lei
- MARA Key Laboratory of Development and Application of Rural Renewable Energy, Sichuan Institute of Rural Human Settlements, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), 13 Section 4 South Renmin Rd, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Agricultural Academy of Sciences, 13 Section 4 South Renmin Rd, Chengdu, 610041, China
| |
Collapse
|
4
|
Wang X, Wang T, Meng H, Xing F, Yun H. Anammox process in anaerobic baffled biofilm reactors with columnar packings: Characteristics of flow field and microbial community. CHEMOSPHERE 2024; 355:141774. [PMID: 38522670 DOI: 10.1016/j.chemosphere.2024.141774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The enrichment of anammox bacteria is a key issue in the application of anammox processes. A new type of reactor - anaerobic baffle biofilm reactor (ABBR) developed from anaerobic baffle reactor (ABR) was filled with columnar packings and established for effective enrichment of anammox bacteria. The flow field analysis showed that, compared with ABR, ABBR narrowed the dead zone so as to improve the substrate transferring performances. Two ABBRs with different types of columnar packings (Packings 1 and Packings 2) were constructed to culture anammox biofilms. Packings 1 consisted of the single-form honeycomb carriers while Packings 2 was modular composite packings consisting of non-woven fabric and honeycomb carriers. The effects of different types of columnar packings on microbial community and nitrogen removal were studied. The ABBR filled with Packings 2 had a higher retention rate of biomass than the ABBR filled with Packings 1, making the anammox start-up period be shortened by 21.28%. The enrichment of anammox bacteria were achieved and the dominant anammox bacteria were Candidatus Brocadia in both R1 and R2. However, there were four genera of anammox bacteria in R2 and one genus of anammox bacteria in R1, and the cell density of anammox bacteria in R2 was 95% higher than that in R1. R2 has the advantage of maintaining excellent and stable nitrogen removal performance at high nitrogen loading rate. The results revealed that the packings composed of two types of carriers may have a better enrichment effect on anammox bacteria. This study is of great significance for the rapid enrichment of anammox bacteria and the technical promotion of anammox process.
Collapse
Affiliation(s)
- Xian Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Tao Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China.
| | - Hao Meng
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Fanghua Xing
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Hongying Yun
- Department of Environmental Engineering, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| |
Collapse
|
5
|
Gao R, Jin H, Han M, Lou J. Iron-mediated DAMO-anammox process: Revealing the mechanism of electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120750. [PMID: 38520849 DOI: 10.1016/j.jenvman.2024.120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The nitrate denitrifying anaerobic methane oxidation-anaerobic ammonia oxidation (DAMO-anammox) can accomplish nitrogen removal and methane (CH4) reduction. This process greatly contributes to carbon emission mitigation and carbon neutrality. In this study, we investigated the electron transfer process of functional microorganisms in the iron-mediated DAMO-anammox system. Fe3+ could be bound to several functional groups (-CH3, COO-, -CH) in extracellular polymeric substance (EPS), and the functional groups bound were different at different iron concentration. Fe3+ underwent reduction reactions to produce Fe2+. Most Fe3+ and Fe2+ react with microorganisms and formed chelates with EPS. Three-dimensional fluorescence spectra showed that Fe3+ affected the secretion of tyrosine and tryptophan, which were essential for cytochrome synthesis. The presence of Fe3+ accelerated c-type cytochrome-mediated extracellular electron transfer (EET), and when more Fe3+ existed, the more cytochrome C expressed. DAMO archaea (M. nitroreducens) in the system exhibited a high positive correlation with the functional genes (resa and ccda) for cytochrome c synthesis. Some denitrifying microorganisms showed positive correlations with the abundance of riboflavin. This finding showed that riboflavin secreted by functional microorganisms acted as an electron shuttle. In addition, DAMO archaea were positively correlated with the hair synthesis gene pily1, which indicated that direct interspecies electron transfer (DIET) may exist in the iron-mediated DAMO-anammox system.
Collapse
Affiliation(s)
- Ran Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Hao Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Mengru Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Juqing Lou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
6
|
Hu J, Wang J, Li X, Zhao J, Liu W, Zhu C. Efficient nitrogen removal and substrate usage in integrated fixed-film activated sludge-anammox system under seasonal temperature variation. BIORESOURCE TECHNOLOGY 2024; 391:129946. [PMID: 37907120 DOI: 10.1016/j.biortech.2023.129946] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
To elucidate how integrated fixed-film activated sludge (IFAS) system favors nitrogen removal performance under seasonal temperature variations, two push-flow reactors were operated with and without carriers under the same operating conditions. The results show that the IFAS system had significant advantages in shock response and low temperature adaptation, with a nitrogen removal rate of 0.37-0.53 kg-N(m3·d)-1 at the temperature of 8-12 °C. Anammox bacteria on carriers were almost unaffected by temperature variation, and its nitrogen removal contribution rate stabilized at 55 % in the IFAS system. The Haldane model reveals that the specific anammox activity in the IFAS system was 28 % to 49 % higher than that in the control system at 13 °C. Candidatus_Jettenia, with the highest abundance of 45 %, was the dominant species in the IFAS system and preferred to attach to the carriers. This study provides a feasible scheme for the application of anammox process.
Collapse
Affiliation(s)
- Juntong Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jianfang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215009, PR China; Tianping College, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Xingran Li
- Tianping College, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Junjie Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Wanting Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chen Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| |
Collapse
|
7
|
Yang R, Li Y, Chen J, Wu J, Zhang S, Chen S, Wang X. Characteristics variations of size-fractionated anammox granules and identification of the potential effects on these evolutions. ENVIRONMENTAL RESEARCH 2023; 237:116875. [PMID: 37640093 DOI: 10.1016/j.envres.2023.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Anaerobic ammonium oxidation (anammox) granulation which contributed to system stabilization and performance improvement has great potential in the field of wastewater nitrogen removal. The researchers fractionated anammox granules into small-size (0.5-0.9 mm), medium-size (1.8-2.2 mm), and large-size (2.8-3.5 mm) categories to examine their properties and mechanisms. Various analyses, including high-throughput sequencing, determination of inorganic elements and extracellular polymeric substances (EPS), and microbial function prediction, were conducted to characterize these granules and understand their impact. The results revealed distinct characteristics among the different-sized granules. Medium-size granules exhibited the highest sphericity, EPS content, and anammox abundance. In contrast, large-size granules had the highest specific surface area, heme c content, specific anammox activity, biodiversity, and abundance of filamentous bacteria. Furthermore, the precipitates within the granules were identified as CaCO3 and MgCO3, with the highest inorganic element content found in the large-size granules. Microbial community and function annotation also varied with granule size. Based on systematic analysis, the researchers concluded that cell growth, chemical precipitation, EPS secretion, and interspecies interaction all played a role in granulation. Small-size granules were primarily formed through cell growth and biofilm formation. As granule size increased, EPS secretion and chemical precipitation became more influential in the granulation process. In the large-size granules, chemical precipitation and interspecies interaction, including synergistic effects with nitrifying, denitrifying, and filamentous bacteria, as well as metabolic cross-feeding, played significant roles in aggregation. This interplay ultimately contributed to higher anammox activity in the large-size granules. By fully understanding the mechanisms involved in granulation, this study provides valuable insights for the acclimation of anammox granules with optimal sizes under different operational conditions.
Collapse
Affiliation(s)
- Ruili Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Fujian, Xiamen, 361021, PR China; Yancheng Institute of Technology, Jiangsu, Yancheng, 224051, PR China
| | - Yenan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Fujian, Xiamen, 361021, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinglin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Fujian, Xiamen, 361021, PR China
| | - Junbin Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Fujian, Xiamen, 361021, PR China
| | - Shici Zhang
- Hubei Geological Survey, Wuhan, 430034, PR China
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Fujian, Xiamen, 361021, PR China
| | - Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Fujian, Xiamen, 361021, PR China.
| |
Collapse
|
8
|
Men Y, Liu L, Wang S, Bi Y, Meng F, Qiu C, Wang D, Yu J, Yang Y. Extracellular polymeric substances and microbial community shift during the start-up of a single-stage partial nitritation/anammox process. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10931. [PMID: 37759340 DOI: 10.1002/wer.10931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
A sequencing batch reactor (SBR) was operated to investigate variations of extracellular polymeric substances (EPS) and microbial community during the start-up of the single-stage partial nitritation/anammox (SPN/A) process at intermittent aeration mode. The SPN/A system was successfully started on day 34, and the nitrogen removal efficiency and total nitrogen loading rate were 82.29% and 0.31 kg N/(m3 ·day), respectively. Furthermore, the relationship between the protein secondary structures and microbial aggregation was strongly related. The α-helix/ (β-sheet + random coil) ratios increased obviously from 0.20 ± 0.03 to 0.23 ± 0.01, with the sludge aggregation mean size increased from 56 to 107 μm during the start-up of SPN/A. During the start-up of SPN/A, Candidatus Kuenenia was the primary anammox bacteria, whereas Nitrospira was the main functional bacteria of nitrite-oxidizing bacteria. Correlation between the microbial community and EPS components was performed. The EPS and microbial community played important roles in keeping stable nitrogen removal and the formation of sludge granules. PRACTITIONER POINTS: Intermittent aeration strategy promoted SPN/A system start-up. EPS composition and protein secondary structure were related with the sludge disintegration and aggregation. Microbial community shift existed and promoted the stability of sludge and reactor performance during SPN/A start-up.
Collapse
Affiliation(s)
- Yan Men
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, China
| | | |
Collapse
|
9
|
Song J, Li M, Wang C, Fan Y, Li Y, Wang Y, Zhang W, Li H, Wang H. Enhanced treatment of landfill leachate by biochar-based aerobic denitrifying bacteria functional microbial materials: Preparation and performance. Front Microbiol 2023; 14:1139650. [PMID: 36846797 PMCID: PMC9945275 DOI: 10.3389/fmicb.2023.1139650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Objective In this work, polyvinyl alcohol (PVA) and sodium alginate (SA) were used as entrapped carriers and Artemisia argyi stem biochar (ABC) was used as an absorption carrier to immobilize aerobic denitrifying bacteria screened from landfill leachate, thus a new carbon-based functional microbial material (PVA/SA/ABC@BS) was successfully prepared. Methods The structure and characteristics of the new material were revealed by using a scanning electron microscope and Fourier transform infrared spectroscopy, and the performance of the material for treating landfill leachate under different working conditions was studied. Results ABC had abundant pore structures and that the surface contained many oxygen-containing functional groups, carboxyl groups, and amide groups, etc. and it had good absorbing performance and strong acid and alkali buffering capacity, which was beneficial to the adhesion and proliferation of microorganisms. After adding ABC as a composite carrier, the damage rate of immobilized particles was decreased by 1.2%, and the acid stability, alkaline stability, and mass transfer performance were increased by 9.00, 7.00, and 56%, respectively. When the dosage of PVA/SA/ABC@BS was 0.017g/ml, the removal rates of nitrate nitrogen (NO3 --N) and ammonia nitrogen (NH4 +-N) were the highest, which were 98.7 and 59.4%, respectively. When the pH values were 11, 7, 1, and 9, the removal rates of chemical oxygen demand (COD), NO3 --N, nitrite nitrogen (NO2 --N) and NH4 +-N reached the maximum values, which were 14.39, 98.38, 75.87, and 79.31%, respectively. After PVA/SA/ABC@BS was reused in 5 batches, the removal rates of NO3 --N all reached 95.50%. Conclusion PVA, SA and ABC have excellent reusability for immobilization of microorganisms and degradation of nitrate nitrogen. This study can provide some guidance for the great application potential of immobilized gel spheres in the treatment of high concentration organic wastewater.
Collapse
Affiliation(s)
- Jianyang Song
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China,School of Civil Engineering, Nanyang Institute of Technology, Nanyang, China,School of Civil Engineering, Wuhan University, Wuhan, China,*Correspondence: Jianyang Song, ✉
| | - Minghui Li
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang, China,College of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Chunyan Wang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Yujie Fan
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Yuan Li
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Yongkun Wang
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Wenxiao Zhang
- School of Civil Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Li D, Wei Z, Li S, Zeng H, Zhang J. Insight into dead space effects in granular anammox process with organic stress. BIORESOURCE TECHNOLOGY 2022; 359:127504. [PMID: 35738318 DOI: 10.1016/j.biortech.2022.127504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
In this study, the dead space was demonstrated to enhance the robustness of anammox nitrogen (N)-removal under organic stress. Different from the "yellow aggregates" that inhabit in mixing space were assembled by anammox and heterotrophic micro-colonies, the "red granules" that inhabit in dead space were formed by initial anammox aggregates that growing outward with higher anammox-activity, settleability and sludge stability, which endowed the dead space the role of "anammox-stabilizer" with prominent anammox N-removal contribution (63.8%) especially under high organic stress. The extracellular polymeric substances (EPS) dynamic balance test revealed that the high and stable EPS contents in dead space were attributed to the low EPS degradation rate and low proportion of heterotrophic bacteria (HB)-produced EPS, respectively. The weak hydrodynamic forces were the key to less HB-colonization and high granular stability in dead space. Retaining a certain dead space is necessary to prevent anammox bacteria (AnAOB) loss under organic stress.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Ziqing Wei
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
11
|
Li D, Dang Z, Zhang J. Novel strategy for rapid start-up and stable operation of anammox: Negative pressure coupled with the direct-current electric field. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115167. [PMID: 35500490 DOI: 10.1016/j.jenvman.2022.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
An application challenge of anaerobic ammonia oxidation (anammox) is the slow proliferation rate of anaerobic ammonium oxidation bacteria (AnAOB). This study adopted negative pressure coupled with the direct-current electric field (NP-DCEF) to evaluate system nitrogen removal performance. Results showed that the total nitrogen removal rate (TNRR) of the NP-DCEF system was stable at 88.6% after seven days. Compared with that of the ordinary operating system (45.4%), the relative abundance of Candidatus-kuenenia considerably increased from 51.9% to 57.6%. Under transient and long-term influent fluctuation, the NP-DCEF system showed high nitrogen removal performance. The specific activity of AnAOB (SAA) reached 11.0 mg N∙g Vss-1 h-1 under load fluctuation, and it was 8.7 mg N∙g Vss-1 h-1 under ordinary operational conditions. In addition, the specific activities of hydrazine dehydrogenase (HDH) and hydrazine synthetase (HZS) reached 32.66 and 92.95 U∙L-1, which are considerably higher than those under the ordinary operating conditions (18.41 and 63.20 U∙L-1). These results indicated that the novel operation strategy has specific feasibility and potential for the start-up and long-term operation of anammox.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China.
| | - Zhaoxian Dang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
12
|
Yang D, Jiang C, Xu S, Gu L, Wang D, Zuo J, Wang H, Zhang S, Wang D, Zhang H, Zhuang X. Insight into nitrogen removal performance of anaerobic ammonia oxidation in two reactors: Comparison based on the aspects of extracellular polymeric substances and microbial community. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Huo P, Chen X, Yang L, Wei W, Ni BJ. Modeling of sulfur-driven autotrophic denitrification coupled with Anammox process. BIORESOURCE TECHNOLOGY 2022; 349:126887. [PMID: 35202830 DOI: 10.1016/j.biortech.2022.126887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
While sulfur-driven autotrophic denitrification (SDAD) occurring in the anoxic reactor of the sulfate reduction, autotrophic denitrification and nitrification integrated (SANI) system has been regarded as the main nitrogen removal bioprocess, little is known about the accompanying Anammox bacteria whose presence is made possible by the co-existence of NH4+ and NO2-. Therefore, this work firstly developed an integrated SDAD-Anammox model to describe the interactions between sulfur-oxidizing bacteria and Anammox bacteria. The model was subsequently used to explore the impacts of influent conditions on the reactor performance and microbial community structure of the anoxic reactor. The results revealed that at a relatively low ratio of <1.5 mg S/mg N, Anammox bacteria could survive and even take a dominant position (up to 58.9%). Finally, a modified SANI system configuration based on the effective collaboration between SDAD and Anammox processes was proposed to improve the efficiency of the treatment of sulfate-rich saline sewage.
Collapse
Affiliation(s)
- Pengfei Huo
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China.
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
14
|
Cheng B, Du J, Bao J, Tufail H, Xu T, Zhang Y, Mao Q, Faheem M. Insight into enrichment of anammox bacteria by a polyurethane sponge carrier coupled with iron-carbon micro-electrolysis under no strict anaerobic condition. BIORESOURCE TECHNOLOGY 2022; 347:126673. [PMID: 35007733 DOI: 10.1016/j.biortech.2022.126673] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
A novel composite carrier (ICME-PS) was formed by coupling polyurethane sponge carriers (PS) with different pore sizes (15, 25, 40 ppi) and iron-carbon micro-electrolysis (ICME), which was used for enrichment of anammox bacteria and stable operation under no strict anaerobic condition. An increase of 5.67%-38.55% in specific anammox activity (SAA), an significant enhancement of biofilm stability and an improvement of 14.61%-42.38% in Ca.Brocadia were observed in ICME-PS, compared to PS carriers. ICME played a dual role: 1) contributed to the formation of an anaerobic microenvironment; 2) used for nitrogen cycle reactions. Additionally, small-pore carriers with highest biofilm stability can be used in high shear environments, while medium-pore carriers achieved the highest SAA in stable environments. Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that ICME application reduced the energy barrier and improved aggregation performance. This study designed a novel composite carrier to broaden the application of anammox under no strict anaerobic condition.
Collapse
Affiliation(s)
- Benai Cheng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jiangkun Du
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - JianGuo Bao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Haseeb Tufail
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Tiantian Xu
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yi Zhang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Qidi Mao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Muhammad Faheem
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
15
|
Shao Y, Zhou Z, Jiang J, Jiang LM, Huang J, Zuo Y, Ren Y, Zhao X. Membrane fouling in anoxic/oxic membrane reactors coupled with carrier-enhanced anaerobic side-stream reactor: Effects of anaerobic hydraulic retention time and mechanism insights. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|