1
|
Shahpoury P, Schuster J, Harner T. Oxidative potential of ambient particulate matter from community sites in Alberta's oil sands region. CHEMOSPHERE 2025; 378:144374. [PMID: 40233700 DOI: 10.1016/j.chemosphere.2025.144374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/17/2025]
Abstract
Air pollution is a major environmental health risk and it has been associated with various diseases and mortality worldwide. The inhalation of fine particulate matter (PM) is an important cause of health effects from air pollution with one of underlaying mechanisms involving the induction of oxidative stress in the body. Oil sands mining is a major economic sector and a notable source of air pollution in northern Alberta, Canada. Despite this, studies investigating the potential health impacts associated with exposure to air pollutants in the region are rare. For the first time in this work, using an acellular •OH assay, we studied the oxidative potential (OP) of fine (<2.5 μm diameter) and coarse (2.5-10 μm diameter) PM from four community sites in the vicinity of oil sands production facilities. OPOH was found to be dominated by fine PM, which on average accounted for 70 % reactivity of the studied PM size range. The highest OPOH was found at the most populated sites located south of the open pit mines and with mixed emission sources, suggesting a cumulative effect of oil sands and non-oil sands sources. Nevertheless, OPOH was relatively small compared to values reported for urban sites influenced by traffic and industrial emissions in Canada. OPOH variation could not be linked with a statistical significance to changes in the concentrations of PM, trace metals, and secondary inorganic salts but, for a small set of samples, OPOH was associated with organic carbon and potassium, which suggests the influence of reactive organic species from biomass combustion. A larger sample size will be needed in order to examine more closely the links between various OP metrics and the aerosol composition and sources in the region. This work provides a proof of concept to support future studies aimed at assessing potential health impacts associated with exposure to air pollutants in the oil sands region.
Collapse
Affiliation(s)
- Pourya Shahpoury
- Environmental and Life Sciences, Trent University, Peterborough, Canada.
| | - Jasmin Schuster
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| |
Collapse
|
2
|
Hao J, Chen Y, Zhang L. Modeling trace elements over Athabasca oil sands region in Alberta, Canada using WRF-Chem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179144. [PMID: 40140263 DOI: 10.1016/j.scitotenv.2025.179144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025]
Abstract
The Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada is a significant source of particulate elements, which may cause negative effects on human and ecosystem health. This study simulates the transport and deposition of eight elements (Al, Ca, Fe, K, Mn, Si, Ti, and Zn) in the AOSR during 2016-2017 using WRF-Chem with a recently developed regional-scale emission database of elements as model input. Point and area emissions of the elements were gridded in the model domain, with stack emissions also considering the plume rise. The model-measurement differences in annual concentrations of the sum of the eight elements were 23 % at AMS1, 25 % at AMS17, and - 56 % at AMS18. Modeled annual average concentrations and atmospheric deposition of individual elements ranged from 0.016 to 2.67 μg m-3 (the sum total of 5.98 μg m-3) and from 2.62 to 385 mg m-2 yr-1 (862 mg m-2 yr-1), respectively, in the central industrial area of the AOSR. The concentration and deposition decreased rapidly with distance from the center industrial area, e.g., by three orders of magnitude in areas 150 km away. Adding the three sites together, modeled total concentrations of the eight elements were 110 % higher during the cold season and 29 % lower during the warm season than the measured values, noting that constant emission rates were used throughout the years of 2016-2017. Two model sensitivity tests were conducted, with the first one using seasonally varying emissions and the second one replacing the default dry and wet deposition schemes in WRF-Chem with different ones found in literature, to demonstrate the magnitudes of the uncertainties in the model simulated ambient concentrations and atmospheric deposition of particulate elements and major causing factors of the uncertainties.
Collapse
Affiliation(s)
- Jingliang Hao
- Department of Earth and Space Science & Engineering, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Yongsheng Chen
- Department of Earth and Space Science & Engineering, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| |
Collapse
|
3
|
Blanchard D, Gordon M, Dang DH, Makar PA, Kirk JL, Aherne J. Atmospheric deposition of chromophoric dissolved organic matter in the Athabasca Oil Sands Region, Canada, is strongly influenced by industrial sources during the winter months. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125936. [PMID: 40020904 DOI: 10.1016/j.envpol.2025.125936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
There is growing interest in the atmospheric deposition of chromophoric dissolved organic matter (CDOM) owing to its impact on aquatic processes and surface albedo. Industrial operations in the Athabasca Oil Sands Region (AOSR), Canada, are a major source of emissions of organic gases and particulate matter, which likely contribute to regional CDOM deposition. Here we investigated the composition and spatiotemporal variation of CDOM within regional snowpack (45 sites, collected March of 2023) and weekly precipitation samples (three monitoring stations between January 2021-December 2021) using ultraviolet-visible and fluorescence spectroscopy. Spectroscopic analysis identified three distinct fluorescent compounds (fluorophores) in both snowpack and precipitation. Elevated absorbance and fluorescence intensity among near-field samples demonstrated that industrial emissions influenced CDOM deposition in the AOSR. Fluorescent compounds linked to wildfire emissions (indicated by positive associations with pyrogenic indicators) were the dominant source of fluorescence during the summer while an industrial-sourced fluorophore (indicated by high near-field emission intensity and positive associations with continuous air quality monitoring data) was most prominent (absolute and relative emission intensity) during the cold season, possibly due to enhanced atmospheric stability and lower photolysis rates favouring fluorophore formation. Our results suggested that elevated wintertime CDOM deposition associated with oil sands operations will potentially alter snowpack albedo throughout the region.
Collapse
Affiliation(s)
- Dane Blanchard
- Environmental & Life Sciences, Trent University, Ontario, K9L 0G2, Canada.
| | - Mark Gordon
- Earth and Space Sciences, York University, Ontario, M3J 1P3, Canada
| | - Duc Huy Dang
- Environmental & Life Sciences, Trent University, Ontario, K9L 0G2, Canada; Department of Chemistry, Trent University, Peterborough, Ontario, K9L 0G2, Canada
| | - Paul Andrew Makar
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Jane L Kirk
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - Julian Aherne
- Environmental & Life Sciences, Trent University, Ontario, K9L 0G2, Canada
| |
Collapse
|
4
|
Barraza F, Javed MB, Noernberg T, Schultz J, Shotyk W. Spatial variation and chemical reactivity of dusts from open-pit bitumen mining using trace elements in snow. CHEMOSPHERE 2024; 350:141081. [PMID: 38160952 DOI: 10.1016/j.chemosphere.2023.141081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The chemical reactivity of trace elements (TEs) in dusts from bitumen mining, upgrading and related industrial activities in the Athabasca Bituminous Sands region (ABS), Alberta, Canada, was evaluated using the acid-soluble fraction of snow. Samples were collected at 14 sites along the Athabasca River (AR) and its tributaries, and at 3 remote locations. Following metal-free, ultra-clean procedures for processing and analysis, samples were leached with nitric acid (pH < 1), filtered (<0.45 μm), and analyzed using ICP-MS. Insoluble particles (>0.45 μm) were examined using SEM-EDS. Along the river, acid-soluble concentrations of TEs varied by 6 orders of magnitude, from 1 mg/L (Al) to less than 1 ng/L (Tl). Conservative (Al, Y, La, Th) and mobile (Li, Be, Cs, Sr) lithophile elements, those enriched in bitumen (V, Ni, Mo), and potentially toxic chalcophile elements (As, Cd, Pb, Sb, Tl) showed considerable spatial variation. Normalizing the concentrations of TEs in samples collected near industry to the corresponding concentrations in snow from the reference site (UTK), resulted in enrichments of V and most of the lithophile elements. Dust reactivity, quantified as the ratio of acid-soluble to total concentrations, was less than 50% suggesting limited bioaccessibility. The large differences in behaviour between Cd and Pb versus Ni and V could be due to the occurrence of the former pair in carbonate or sulfide minerals, versus acid-insoluble petcoke particles for the latter couple. Spatial variations in the reactivity of TEs most likely reflect the range in diversity and chemical stability of dust particles, and variations in their abundance in primary source areas. The leaching conditions employed here are extreme (pH < 1) and intended to identify an upper limit of chemical reactivity, with far less dust dissolution expected when these dusts encounter natural waters of the area which range in pH from 4 to 8.
Collapse
Affiliation(s)
- Fiorella Barraza
- Department of Renewable Resources, University of Alberta. Edmonton, AB, Canada
| | - Muhammad Babar Javed
- Department of Renewable Resources, University of Alberta. Edmonton, AB, Canada; Hatfield Consultants. Fort McMurray, AB, Canada
| | - Tommy Noernberg
- Department of Renewable Resources, University of Alberta. Edmonton, AB, Canada
| | - Judy Schultz
- Department of Renewable Resources, University of Alberta. Edmonton, AB, Canada
| | - William Shotyk
- Department of Renewable Resources, University of Alberta. Edmonton, AB, Canada.
| |
Collapse
|
5
|
Yang F, Mamun AA, Cheng I, Qiu X, Zhang L. Contributions of the oil sands sources to the ambient concentrations and deposition of particulate elements in the Canadian Athabasca oil sands region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165519. [PMID: 37451466 DOI: 10.1016/j.scitotenv.2023.165519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
In this study, model sensitivity tests were conducted to investigate the relative contributions between emission sources of oil sands (OS) activities and other sources to the ambient concentrations and deposition of 29 particulate elements in the Athabasca oil sands region (AOSR) of Canada. Element emission sources from a recently developed emission database were grouped into three source sectors for elements in PM2.5 (OS-Industrial, OS-Dust, and Non-OS) and two source sectors for elements in PM2.5-10 (OS-All and Non-OS). The OS-Dust and OS-Industrial sectors (combined as one sector for PM2.5-10; OS-All) included element sources linked to dust and other industrial activities from the OS activities, respectively, whereas the Non-OS sector included remaining sources in the region, unrelated to the OS activities. The OS-Industrial, OS-Dust, and Non-OS emissions (tonnes/year) of all elements in PM2.5 were 326, 1430, and 562, respectively. The OS-All and Non-OS emissions (tonnes/year) of all elements in PM2.5-10 were 5890 and 2900, respectively. The element concentrations were simulated by the CALPUFF dispersion model. The sum of the domain averaged annual mean concentrations of all elements in PM2.5 and PM2.5-10 from all sources were 57.3 ng/m3 and 30.4 ng/m3, respectively. Except for Co (PM2.5 and PM2.5-10), Sb (PM2.5-10), and Sn (PM2.5-10), major proportions (≥ 59 %) of the ambient concentrations of the individual elements were linked to the OS source sector. Overall, the OS sector was responsible for 78 % and 68 % of the sum of the mean ambient concentrations of all elements in PM2.5 and PM2.5-10, respectively, which are close to the corresponding emission contributions (76 % and 67 %, respectively). Likewise, the bulk proportion (∼74 %) of the sum of the total atmospheric deposition of all elements was also associated with the OS sources. Carcinogenic and non-carcinogenic risks associated with inhalation exposure to airborne elements were below the recommended threshold risk levels.
Collapse
Affiliation(s)
- Fuquan Yang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada; SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario N1G 5L3, Canada
| | - Abdulla Al Mamun
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Irene Cheng
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Xin Qiu
- SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario N1G 5L3, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| |
Collapse
|
6
|
Zhang J, Feng L, Liu Z, Chen L, Gu Q. Source apportionment of heavy metals in PM 2.5 samples and effects of heavy metals on hypertension among schoolchildren in Tianjin. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8451-8472. [PMID: 37639041 DOI: 10.1007/s10653-023-01689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/11/2023] [Indexed: 08/29/2023]
Abstract
The prevalence of hypertension in children has increased significantly in recent years in China. The aim of this study was to provide scientific support to control ambient heavy metals (HMs) pollution and prevent childhood hypertension. In this study, ambient HMs in PM2.5 were collected, and 1339 students from Tianjin were randomly selected. Positive matrix factorization (PMF) was used to identify and determine the sources of HMs pollution. The generalized linear model, Bayesian kernel machine regression (BKMR) and the quantile g-computation method were used to analyze the relationships between exposure to HMs and the risk of childhood hypertension. The results showed that HMs in PM2.5 mainly came from four sources: soil dust, coal combustion, incineration of municipal waste and the metallurgical industry. The positive relationships between As, Se and Pb exposures and childhood hypertension risk were found. Coal combustion and incineration of municipal waste were important sources of HMs in the occurrence of childhood hypertension. Based on these accomplishments, this study could provide guidelines for the government and individuals to alleviate the damaging effects of HMs in PM2.5. The government must implement policies to control prime sources of HMs pollution.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Environmental Health and School Hygiene, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Lihong Feng
- Department of Environmental Health and School Hygiene, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Zhonghui Liu
- Department of Environmental Health and School Hygiene, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Lu Chen
- Department of Environmental Health and School Hygiene, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China
| | - Qing Gu
- Department of Environmental Health and School Hygiene, Tianjin Centers for Disease Control and Prevention, No.6 Huayue Rd, Tianjin, China.
- School of Public Health, Tianjin Medical University, No.22 Qixiangtai Rd, Tianjin, China.
| |
Collapse
|
7
|
Dennett JM, Dersch A, Chipewyan Prairie First Nation, Barraza F, Shotyk W, Nielsen SE. Trace elements in the culturally significant plant Sarracenia purpurea in proximity to dust sources in the oil sands region of Alberta, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165142. [PMID: 37379909 DOI: 10.1016/j.scitotenv.2023.165142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Accessible populations of plants are critical to the meaningful exercise of Aboriginal and treaty rights in Canada. In the oil sands region of Alberta, populations of culturally significant plant species overlap with extensive oil and gas development. This has led to a host of questions and concerns related to plant health and integrity from both Indigenous communities and western scientists. Here, we assessed trace element concentrations in the northern pitcher-plant (tsala' t'ile; Sarracenia purpurea L.) with a focus on elements associated with fugitive dust and bitumen. Plant leaves were collected using clean methods and washed prior to analyses in an ultra-clean, metal-free laboratory. Pitcher-plant was an excellent model for assessing the impacts of industrial development on a culturally important, vulnerable species. Although concentrations of trace elements in pitcher-plant were low and not indicative of a toxicological concern, we saw clear dust signatures in plant tissues related to road and surface mine proximity. Elements associated with fugitive dust and bitumen extraction declined exponentially with increasing distance from a surface mine, a well-established regional pattern. However, our analyses also captured localized spikes in trace element concentrations within 300 m of unpaved roads. These local patterns are more poorly quantified at the regional scale but are indicative of the burden to Indigenous harvesters wishing to access plant populations that are not impacted by dust. Further work to directly quantify dust loads on culturally significant plants will help to define the amount of harvesting area lost to Indigenous communities due to dust impacts.
Collapse
Affiliation(s)
- J M Dennett
- Department of Renewable Resources, University of Alberta, Edmonton T6G 2H1, Canada.
| | - A Dersch
- Moccasin Flower Consulting Inc., Slave Lake, Alberta T0G 2A0, Canada
| | | | - F Barraza
- SWAMP Laboratory, Department of Renewable Resources, University of Alberta, Edmonton T6G 2G7, Canada
| | - W Shotyk
- SWAMP Laboratory, Department of Renewable Resources, University of Alberta, Edmonton T6G 2G7, Canada
| | - S E Nielsen
- Department of Renewable Resources, University of Alberta, Edmonton T6G 2H1, Canada
| |
Collapse
|
8
|
Al Mamun A, Zhang L, Yang F, Cheng I, Qiu X. Atmospheric deposition mapping of particulate elements in the Canadian Athabasca oil sands region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121868. [PMID: 37244528 DOI: 10.1016/j.envpol.2023.121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/24/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
This study used a deposition modeling framework to generate gridded dry, wet, and total (dry + wet) deposition fluxes of 27 particulate elements over the Canadian Athabasca oil sands region and its surrounding areas for the years 2016-2017. The framework employed the element concentrations from the CALPUFF dispersion model outputs that were bias-corrected against measured concentrations, modeled dry deposition velocities, precipitation analysis data, and literature values of element-specific fine mode fractions and scavenging ratios by rain and snow. The annual total deposition (mg/m2/year) of all elements (EM) across the domain ranged from 4.49 to 5450 and the mean and median deposition were 60.9 and 31.0, respectively. Total EM deposition decreased rapidly within a short distance from the oil sands mining area. Annual mean total deposition (mg/m2/year) of EM was 717 in Zone 1 (within 30 km from a reference point, representing the center of the oil sands mining area), 115 in Zone 2 (30-100 km from the reference point), and 35.4 in Zone 3 (beyond 100 km from the reference point). The deposition of individual elements was primarily governed by their respective concentrations and among all elements the annual mean total deposition (μg/m2/year) over the domain varied five orders of magnitude ranging from 0.758 (Ag) to 20,000 (Si). Annual mean dry and wet deposition (mg/m2/year) of EM over the domain were 15.7 and 45.2, respectively. Aside from S, which has relatively lower precipitation scavenging efficiencies, wet deposition was the dominant deposition type in the region contributing from 51% (Pb) to 86% (Ca) of the respective total deposition. Total EM deposition over the domain in the warm season (66.2 mg/m2/year) was slightly higher than that in the cold season (55.6 mg/m2/year). Deposition of individual elements in Zone 1 were generally lower than their deposition at other sites across North America.
Collapse
Affiliation(s)
- Abdulla Al Mamun
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada.
| | - Fuquan Yang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada; SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario, N1G 5L3, Canada
| | - Irene Cheng
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Xin Qiu
- SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario, N1G 5L3, Canada
| |
Collapse
|
9
|
Incorporating Industrial and Climatic Covariates into Analyses of Fish Health Indicators Measured in a Stream in Canada’s Oil Sands Region. ENVIRONMENTS 2022. [DOI: 10.3390/environments9060073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Industrial and other human activities in Canada’s oil sands region (OSR) influence the environment. However, these impacts can be challenging to separate from natural stresses in flowing waters by comparing upstream reference sites to downstream exposure locations. For example, health indicators of lake chub (Couesius plumbeus) compared between locations in the Ells River (Upper and Lower) in 2013 to 2015 and 2018 demonstrated statistical differences. To further examine the potential sources of variation in fish, we also analyzed data at sites over time. When fish captured in 2018 were compared to pooled reference years (2013–2015), results indicated multiple differences in fish, but most of the differences disappeared when environmental covariates were included in the Elastic Net (EN) regularized regression models. However, when industrial covariates were included separately in the EN, the large differences in 2018 also disappeared, also suggesting the potential influence of these covariables on the health of fish. Further ENs incorporating both environmental and industrial covariates along with other variables which may describe industrial and natural influences, such as spring or summer precipitation and summer wind speeds and distance-based penalty factors, also support some of the suspected and potential mechanisms of impact. Further exploratory analyses simulating changes from zero and the mean (industrial) activity levels using the regression equations respectively suggest effects exceeding established critical effect sizes (CES) for fish measurements may already be present or effects may occur with small future changes in some industrial activities. Additional simulations also suggest that changing regional hydrological and thermal regimes in the future may also cause changes in fish measurements exceeding the CESs. The results of this study suggest the wide applicability of the approach for monitoring the health of fish in the OSR and beyond. The results also suggest follow-up work required to further evaluate the veracity of the suggested relationships identified in this analysis.
Collapse
|
10
|
Arciszewski TJ. A re-analysis and review of elemental and polycyclic aromatic compound deposition in snow and lake sediments from Canada's Oil Sands Region integrating industrial performance and climatic variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153254. [PMID: 35065131 DOI: 10.1016/j.scitotenv.2022.153254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Much of the research from Canada's oil sands region (OSR) shows contaminants of concern (CoCs) throughout the ambient environment surrounding the industrial facilities. While there are some well-established sources of the CoCs, there is also spatial and temporal variability suggesting activity intensity, changes in technology, types and amounts of fuels combusted at the facilities, and climate may affect the results of deposition studies. This study re-analysed published data on the deposition of elements and polycyclic aromatic compounds (PACs) in snow and the sediments of some lakes by incorporating production data from facilities and climate. Using the Elastic Net (EN) regularized regression, variables describing potential associations between facility-specific activity and climate on the deposition of CoCs were identified. Among the selected variables, the combustion of delayed petroleum coke at the Suncor Basemine was associated with the deposition of CoCs, including elements in snow and in some lakes. Similarly, combustion of petroleum coke at Syncrude Mildred Lake was also identified in some models. In both cases, the effects of petroluem coke combustion are likely associated with the emission and deposition of fly ash. The mass of stored petroleum coke was not selected in snow CoC models, but the speed of the wind was a common driver for PACs. However, the mass of stockpiled petcoke was more closely associated with both elements and PACs in lake sediments. While the potential influence of other variables on the occurrence of CoCs in the OSR was also identified, including the production of crude bitumen and synthetic crude, the use of process and natural gases, temperature, and precipitation, these analyses support much of the earlier work and provides additional nuance. While more work is required, these results suggest facility-specific production and climatic data can be coupled with existing approaches to improve the identification of sources of CoCs in Canada's OSR and practices associated with their release.
Collapse
Affiliation(s)
- T J Arciszewski
- Resource Stewardship Division, Alberta Environment and Parks, Calgary, Alberta, Canada.
| |
Collapse
|
11
|
Exploring the Influence of Industrial and Climatic Variables on Communities of Benthic Macroinvertebrates Collected in Streams and Lakes in Canada’s Oil Sands Region. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying and tracking the influence of industrial activities on streams and lakes is a priority for monitoring in Canada’s oil sands region (OSR). While differences in indicators are often found in waterbodies adjacent to mining facilities, the confounding influence of natural exposures to bitumen and other stressors can affect the identification of industrial effects. However, recent work suggests metrics of industrial activity at individual facilities, including production and fuel consumption, may be used in site-specific analyses to identify influence of the industry as a whole as well as individual operations. This study further examined the potential relationships between industrial and climatic variables on benthic communities from 13 streams and 4 lakes using publicly available data from the minable region and the Elastic Net (EN) variable selection technique. From the full set of possible industrial and climate variables, the EN commonly identified the negative influence of plant and fuel use of petroleum coke at the Suncor Basemine on benthic communities in streams and lakes. The fuel/plant use of petroleum coke at Suncor likely reflects the emission and regional deposition of delayed coke fly ash. Among the other industrial variables, crude bitumen production at Syncrude Mildred Lake and other facilities, steam injection rates, and petroleum coke stockpiling were also selected for some benthic invertebrate indices at some sites. Land disturbance metrics were also occasionally selected, but the analyses largely support the predominant influence of industrial facilities via (inferred) atmospheric pathways. While climate variables were also commonly selected by EN and follow-up work is needed, this study suggests that integrating industrial performance data into analyses of biota using a site-specific approach may have broad applicability in environmental monitoring in the OSR. More specifically, the approach used here may both resolve the long-standing challenge of natural confounding influences on monitoring the status of streams in the OSR and track the influence of industrial activities in biota below critical effect sizes.
Collapse
|