1
|
Zhang C, Du C, Liang B, Yi F, Huang H, Zhang X. Biopolymer-enzyme-induced carbonate precipitation (EICP) for the green solidification/stabilization of graphite tailings: Mechanical, leaching, and microstructural characterization. ENVIRONMENTAL RESEARCH 2025; 276:121471. [PMID: 40139634 DOI: 10.1016/j.envres.2025.121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/13/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
The rapidly increasing global demand for graphite has increased the generation of graphite tailings. However, graphite tailings are rich in harmful substances, such as heavy metals, which pose serious threats to the environment and human health. Traditional recycling methods of graphite tailings face challenges, including high costs, substantial CO2 emissions, and limited effectiveness in heavy-metal stabilization, which inhibit their environmental sustainability in large-scale applications. In this study, a novel ecofriendly strategy was proposed for the green solidification and stabilization (S/S) of graphite tailings. Chitosan (CTS), a biopolymer, was introduced during the enzyme-induced carbonate precipitation (EICP) of graphite tailings. The potential of CTS-EICP in binding the loose particle structure of graphite tailings and inhibiting the release of heavy-metal pollutants was discussed from dual dimensions of mechanical strength and environmental effects. Results revealed that the unconfined compressive strength (UCS), split tensile strength (STS), and calcium carbonate generation rate of CTS-EICP-treated graphite tailings significantly improved compared with those of EICP-treated tailings. The effects were optimal when the CTS content was 0.15 %, reaching 897.8 kPa, 258.1 kPa, and 8.03 %, respectively. After CTS-EICP treatment, the pH of the tailing leachate stabilized at 7.90-8.26 and the fixation rate of heavy-metal ions was 92.61 %-100 %. CTS promoted the formation of carbonate crystals via urease stabilization mechanism, which were embedded in the three-dimensional network formed via the crosslinking of CTS molecules and yielded a multilayer composite barrier structure of "tailings-CTS-carbonate-CTS-tailings." CTS-EICP provided a new perspective for employing biopolymer-EICP synergistic remediation interactions in multidimensional green S/S of heavy metal-containing tailings.
Collapse
Affiliation(s)
- Chengwei Zhang
- School of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Changbo Du
- School of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China.
| | - Bing Liang
- School of Mechanics and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Fu Yi
- School of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Huijie Huang
- School of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Xiangguo Zhang
- Heilongjiang Longxing International Resources Development Co., Ltd., Harbin, 150000, China
| |
Collapse
|
2
|
Chen Y, Hazarika H, Marchelina N. Effect of Bio-Cementation Level and Rainfall Intensity on Surface Erosion Resistance of Biotreated Slope Using PEICP Method. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1662. [PMID: 40271946 PMCID: PMC11990092 DOI: 10.3390/ma18071662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Biomineralization technology is a promising method for soil cementation, enhancing its mechanical properties. However, its application in mitigating slope surface erosion caused by rainfall has not been fully explored. This study experimentally examined the feasibility of using plant-based enzyme-induced carbonate precipitation (PEICP) to reduce slope surface rainfall erosion through simulated rainfall tests. The effects of biotreatment cycles (N) and rainfall intensity (Ri) on erosion resistance were evaluated. The results demonstrated that increasing the biotreatment cycles improved the bio-cementation level, as evidenced by enhanced surface strength, increased calcium carbonate content (CCC) and thicker crust layers. Specifically, as the biotreatment cycles (N) increased from 2 to 6, the crust layer thickness expanded from 5.2 mm to 15.7 mm, with surface strength rising from 38.3 kPa to 244.3 kPa. Likewise, the CCC increased significantly from 1.09% to 5.32%, further reinforcing the soil structure and enhancing erosion resistance. Slopes treated with six biotreatment cycles exhibited optimal erosion resistance across rainfall intensities ranging from 45 to 100 mm/h. Compared to untreated slopes, biotreated slopes showed significant reductions in soil loss, with a decrease to below 10% at N = 4 and near-complete erosion resistance at N = 6. These findings highlight the potential of PEICP technology for improving slope stability under rainfall conditions.
Collapse
Affiliation(s)
- Yuyuan Chen
- Department of Civil Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hemanta Hazarika
- Department of Civil Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Nadella Marchelina
- Department of Building Materials Engineering and Geoengineering, Lublin University of Technology, 20-618 Lublin, Poland
| |
Collapse
|
3
|
Li S, Hu X, Zhao Y, Wu M, Feng Y, Li X, Guo Y. Evaluation of dust fixation effect of urease-based biological dust suppressant and its field application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123119. [PMID: 39488181 DOI: 10.1016/j.jenvman.2024.123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Widespread mining of open-pit coal mines has led to severe dust pollution, which degrades air quality and affects human health. Due to the drawbacks of existing dust suppression methods, there is an urgent need to develop a biological dust suppressant, which is based on urease-induced carbonate precipitation and has excellent potential for application in the field of dust management. The research developed a biological dust suppressant based on urease-induced carbonate precipitation technology. By using biological dust suppressant with different ureases, the dust suppression effect was determined and field applications were conducted. The optimal formulation of the dust suppressant was identified through experiments, and the evaluation of erosion resistance, calcium carbonate yield, hardness, permeability resistance, and crust thickness was conducted, elucidating the consolidation mechanism. After synthesizing the economic benefits and treatment effects of field use, it was found that the optimal ratios of the dust suppressant were 1.0 mol/L for urea and calcium chloride, 100 g/L for soybean flour, and the ratio of urease solution and cementing solution was 1:1 when used; the calcium carbonate yield of the specimen treated by EICP (SCU) was as high as 7.49 %. In an alternative phrasing, after undergoing tests for resistance to wind and rain erosion, the mass loss rates were recorded at 0.24 g m-2·min-1 and 156.51 g m-2·min-1. When compared to the treatment with pure urease, there was a significant improvement in wind erosion resistance by 90 % and in rain erosion resistance by 25.53 %. Field applications have revealed that the distribution of calcium carbonate is uneven and exhibits a positive correlation with hardness, penetration resistance, and the thickness of the crusts formed. This is due to the macromolecular organic matter in crude urease, which not only can form a spatial mesh structure and play a bonding role, but also can provide nucleation sites for urease-induced production of calcium carbonate, promoting the precipitation and aggregation of calcium carbonate, so that the strength is improved.
Collapse
Affiliation(s)
- Suning Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, No. 579, Qianwangang Road, Qingdao, Shandong, China
| | - Xiangming Hu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, No. 579, Qianwangang Road, Qingdao, Shandong, China; Key Lab of Mine Disaster Prevention and Control, Shandong University of Science and Technology, No. 579, Qianwangang Road, Qingdao, Shandong, China
| | - Yanyun Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, No. 579, Qianwangang Road, Qingdao, Shandong, China
| | - Mingyue Wu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, No. 579, Qianwangang Road, Qingdao, Shandong, China.
| | - Yue Feng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, No. 579, Qianwangang Road, Qingdao, Shandong, China
| | - Xiao Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, No. 579, Qianwangang Road, Qingdao, Shandong, China
| | - Yongxiang Guo
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, No. 579, Qianwangang Road, Qingdao, Shandong, China
| |
Collapse
|
4
|
Li G, Li Y, Hua X, Liu J, Yang S, Zhang Y. Study on Pore Water Pressure Model of EICP-Solidified Sand under Cyclic Loading. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4800. [PMID: 39410371 PMCID: PMC11478135 DOI: 10.3390/ma17194800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Under traffic load, earthquake load, and wave load, saturated sand foundation is prone to liquefaction, and foundation reinforcement is the key measure to improve its stability and liquefaction resistance. Traditional foundation treatment methods have many problems, such as high cost, long construction period, and environmental pollution. As a new solidification method, enzyme-induced calcium carbonate precipitation (EICP) technology has the advantages of economy, environmental protection, and durability. Through a triaxial consolidated undrained shear test under cyclic loading, the impacts of confining pressure (σ3), cementation number (Pc), cyclic stress ratio (CSR), initial dry density (ρd), and vibration frequency (f) on the development law of pore water pressure of EICP-solidified sand are analyzed and then a pore water pressure model suitable for EICP-solidified sand is established. The result shows that as σ3 and CSR increase, the rise rate of pore water pressure of solidified sand gradually accelerates, and with a lower vibration number required for liquefaction, the anti-liquefaction ability of solidified sand gradually weakens. However, as Pc, ρd, and f rise, the increase rate of pore water pressure of solidified sand gradually lowers, the vibration number required for liquefaction increases correspondingly, and its liquefaction resistance gradually increases. The test results are highly consistent with the predictive results, which show that the three-parameter unified pore water pressure model is suitable for describing the development law of A-type and B-type pore water pressure of EICP-solidified sand at the same time. The study results provide essential reference value and scientific significance in guidance for preventing sand foundations from liquefying.
Collapse
Affiliation(s)
- Gang Li
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China
| | - Yu Li
- Guangyuan Natural Gas Co., Ltd., Guangyuan 628000, China
| | - Xueqing Hua
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China
| | - Jia Liu
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China
| | - Shasha Yang
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China
- School of Petroleum Engineering and Environmental Engineering, Yan’an University, Yan’an 716000, China
| | - Yao Zhang
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China
| |
Collapse
|
5
|
Li G, Zhu Q, Liu J, Liu C, Zhang J. Study on the Shear Strength and Erosion Resistance of Sand Solidified by Enzyme-Induced Calcium Carbonate Precipitation (EICP). MATERIALS (BASEL, SWITZERLAND) 2024; 17:3642. [PMID: 39124306 PMCID: PMC11313235 DOI: 10.3390/ma17153642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Sand solidification of earth-rock dams is the key to flood discharge capacity and collapse prevention of earth-rock dams. It is urgent to find an economical, environmentally friendly, and durable sand solidification technology. However, the traditional grouting reinforcement method has some problems, such as high costs, complex operations, and environmental pollution. Enzyme-induced calcium carbonate precipitation (EICP) is an anti-seepage reinforcement technology emerging in recent years with the characteristics of economy, environmental protection, and durability. The erosion resistance and shear strength of earth-rock dams solidified by EICP need further verification. In this paper, EICP-solidified standard sand is taken as the research object, and EICP-cemented standard sand is carried out by a consolidated undrained triaxial test. A two-stage pouring method is adopted to pour samples, and the effects of dry density, cementation times, standing time, and confining pressure on the shear strength of cemented standard sand are emphatically analyzed. The relationship between cohesion, internal friction angle, and CaCO3 formation was analyzed. After the optimal curing conditions are obtained through the triaxial shear strength test, the erosion resistance model test is carried out. The effects of erosion angle, erosion flow rate, and erosion time on the erosion resistance of EICP-solidified sand were analyzed through an erosion model test. The results of triaxial tests show that the standard sand solidified by EICP exhibits strain softening, and the peak strength increases with the increase in initial dry density, cementation times, standing time, and confining pressure. When the content of CaCO3 increases from 2.84 g to 12.61 g, the cohesive force and internal friction angle change to 23.13 times and 1.18 times, and the determination coefficients reach 0.93 and 0.94, respectively. Erosion model test results indicate that the EICP-solidified sand dam has good erosion resistance. As the increase in erosion angle, erosion flow rate, and erosion time, the breach of solidified samples gradually becomes larger. Due to the deep solidification of sand by EICP, the development of breaches is relatively slow. Under different erosion conditions, the solidified samples did not collapse and the dam broke. The research results have important reference value and scientific significance for the practice of sand consolidation engineering in earth-rock dams.
Collapse
Affiliation(s)
- Gang Li
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China; (G.L.); (Q.Z.); (C.L.)
| | - Qinchen Zhu
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China; (G.L.); (Q.Z.); (C.L.)
| | - Jia Liu
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China; (G.L.); (Q.Z.); (C.L.)
| | - Cong Liu
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China; (G.L.); (Q.Z.); (C.L.)
| | - Jinli Zhang
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China;
| |
Collapse
|
6
|
Li J, Zhu F, Wu F, Chen Y, Richards J, Li T, Li P, Shang D, Yu J, Viles H, Guo Q. Impact of soil density on biomineralization using EICP and MICP techniques for earthen sites consolidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121410. [PMID: 38850919 DOI: 10.1016/j.jenvman.2024.121410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Enzyme-induced calcium carbonate precipitation (EICP) and microbially-induced calcium carbonate precipitation (MICP) techniques represent emerging trends in soil stabilization. However, the impact of soil density on biomineralization, particularly in historical earthen sites, remains unclear. This study compares the consolidation effects of EICP and MICP on cylindrical samples (10 cm × 5 cm) with three densities (1.5 g/cm3, 1.6 g/cm3, and 1.7 g/cm3) derived from the soil near the UNESCO World Cultural Heritage Site of Suoyang Ancient City, Gansu Province, China. Results showed that calcium carbonate production increased across all densities through bio-cementation, with higher densities producing more calcium carbonate. MICP-treated specimens exhibited larger increases in calcium carbonate production compared to those treated with EICP. Specimens with a density of 1.7 g/cm³ showed a wave velocity increase of 3.26% (EICP) and 7.13% (MICP), and an unconfined compressive strength increase of 8% (EICP) and 26% (MICP). These strength increases correlated with the generation of calcium carbonate. The findings suggest that biomineralization can be effectively utilized for in situ consolidation of earthen sites, emphasizing the importance of considering soil density in biologically-based conservation technologies. Furthermore, MICP shows potential advantages over EICP in providing stronger, compatible and more sustainable soil reinforcement.
Collapse
Affiliation(s)
- Jie Li
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China.
| | - Feiqing Zhu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China
| | - Fasi Wu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China.
| | - Yuxin Chen
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China
| | - Jenny Richards
- School of Geography and the Environment, Oxford University, Oxford, OX1 3QY, UK
| | - Tianxiao Li
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China
| | - Ping Li
- Cultural Heritage Conservation and Design Consulting Co., Ltd. of Mogao Grottoes, Dunhuang, 736200, Gansu, PR China
| | - Dongjuan Shang
- Cultural Heritage Conservation and Design Consulting Co., Ltd. of Mogao Grottoes, Dunhuang, 736200, Gansu, PR China
| | - Jing Yu
- Cultural Heritage Conservation and Design Consulting Co., Ltd. of Mogao Grottoes, Dunhuang, 736200, Gansu, PR China
| | - Heather Viles
- School of Geography and the Environment, Oxford University, Oxford, OX1 3QY, UK
| | - Qinglin Guo
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China.
| |
Collapse
|
7
|
Wang Y, Sun X, Miao L, Wang H, Wu L, Shi W, Kawasaki S. State-of-the-art review of soil erosion control by MICP and EICP techniques: Problems, applications, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169016. [PMID: 38043825 DOI: 10.1016/j.scitotenv.2023.169016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
In recent years, the application of microbially induced calcite precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) techniques have been extensively studied to mitigate soil erosion, yielding substantial achievements in this regard. This paper presents a comprehensive review of the recent progress in erosion control by MICP and EICP techniques. To further discuss the effectiveness of erosion mitigation in-depth, the estimation methods and characterization of erosion resistance were initially compiled. Moreover, factors affecting the erosion resistance of MICP/EICP-treated soil were expounded, spanning from soil properties to treatment protocols and environmental conditions. The development of optimization and upscaling in erosion mitigation via MICP/EICP was also included in this review. In addition, this review discussed the limitations and correspondingly proposed prospective applications of erosion control via the MICP/EICP approach. The current review presents up-to-date information on the research activities for improving erosion resistance by MICP/EICP, aiming at providing insights for interdisciplinary researchers and guidance for promoting this method to further applications in erosion mitigation.
Collapse
Affiliation(s)
- Yong Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiaohao Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Linchang Miao
- Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Hengxing Wang
- Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Linyu Wu
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Wenbo Shi
- School of Intelligent Transportation, Xuchang University, Xuchang 461000, Henan, China
| | - Satoru Kawasaki
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
8
|
Zhao Y, Liu W, Hu X, Li X, Wang C, Yu Y, Zhang J. Effect of surfactant on urease-producing flora from waste activated sludge using microbially induced calcite precipitation technology to suppress coal dust. ENVIRONMENTAL RESEARCH 2023; 237:116941. [PMID: 37633632 DOI: 10.1016/j.envres.2023.116941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
The wettability of microbially induced calcite precipitation (MICP) is a challenge in dust suppression. Herein, the tolerance of urease-producing flora to surfactants was investigated. The optimal tolerance concentrations of the urease-producing flora to sodium dodecylbenzene sulfonate (SDBS, anionic surfactant), alkyl polyglycoside (APG, non-ionic surfactant), and cocamidopropyl betaine (CAB, zwitterionic surfactant), and were 0.2%, 0.1%, and 0.05%. The cetyltrimethylammonium bromide (CTAB, cationic surfactant) inhibited urease production by urease-producing flora. The mineralization products of SDBS, APG, and CAB treatments were all transformed into calcite. The wind resistance test showed that the mass loss of all samples is less than 0.1%. The rain resistance and hardness tests showed that 0.2% SBDS had the best effect, followed by 0.1% APG and 0.05% CAB, and finally, No surfactants. Microbiome analysis showed that the abundance of Sporosarcina and Unclassified_bacillaceae reduced, and the intense competition between Paenalcaligenes and Sporosarcina are essential reasons for reducing urease activity. SDBS and APG could reduce the pathogenic risk of microbial dust suppressants. This study will facilitate the practical application of microbial dust suppressants.
Collapse
Affiliation(s)
- Yanyun Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Wenhao Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiangming Hu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiao Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China; State Key Laboratory of Mine Lab Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Chengcheng Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yiyun Yu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jing Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
9
|
Komaei A, Soroush A, Fattahi SM, Ghanbari H. Wind erosion control using alkali-activated slag cement: Experimental investigation and microstructural analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118633. [PMID: 37478719 DOI: 10.1016/j.jenvman.2023.118633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
This paper aims to mitigate wind erosion of soil by employing alkali-activated slag. Wind tunnel tests were conducted on soil samples treated with varying percentages of slag at different wind speeds (7, 14, 21, and 28 m/s) and under a sand bombardment condition. In the absence of saltating particles, the erodibility ratios of the alkali-activated slag-treated samples with weight percentages of 1%, 2%, 4%, and 6% to the untreated sample at the highest wind speed (i.e., 28 m/s) correspond to 0.19%, 0.10%, 0.08%, and 0.06%, respectively. Moreover, in the presence of saltating particle bombardment, these samples exhibited erodibility reductions of 98.5%, 98.8%, 99.4%, and 99.6% compared to the untreated sample. The strength of the formed crusts, determined by penetrometer tests, increased significantly for the treated samples, ranging from 1300 to 6500 times greater than the untreated sample. The complementary analysis using x-ray diffraction and field emission scanning electron microscopy revealed the formation of albite and anorthite crystals along with the formation of calcium aluminosilicate hydrate, sodium aluminosilicate hydrate, and calcium silicate hydrate gels in the cementation process. Overall, the study highlights the effectiveness of alkali-activated slag in forming strong crusts that provide substantial protection against wind erosion, resulting in a significant decrease in wind erodibility.
Collapse
Affiliation(s)
- Alireza Komaei
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Abbas Soroush
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Seyed Mohammad Fattahi
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hesam Ghanbari
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
10
|
Sun Y, Zhong X, Lv J, Wang G, Hu R. Experimental Study on Different Improvement Schemes of EICP-Lignin Solidified Silt. MATERIALS (BASEL, SWITZERLAND) 2023; 16:999. [PMID: 36770005 PMCID: PMC9919099 DOI: 10.3390/ma16030999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
In practical engineering applications, silt is prone to liquefaction and quicksand. This paper mainly studies the improvement effects of urease, lignin and their mixture on the strength and liquefaction resistance of silt. Based on the results and phenomena of an unconfined compressive strength and dynamic triaxial test, the improvement effects of the compressive strength, deformation resistance and liquefaction resistance of silt under different improvement schemes are analyzed, and the optimal values of the cement or lignin when enzyme-induced calcium carbonate precipitation (EICP) technology, lignin alone or EICP and lignin are obtained. The results show that the optimum concentration of the constant temperature and humidity sample (referred to as the constant humidity sample) and the constant temperature immersion sample (referred to as the soaking sample) of urease in the unconfined compressive strength test is 1.0 mol/L, and the compressive strength of the soaking sample is 4.9 MPa, which is 1.56 times that of the constant humidity sample; the optimum addition ratio of the lignin-improved constant humidity sample is 3%, and its compressive strength is 2.07 Mpa; the optimum addition ratio of the samples immersed at constant temperature is 4%, and the compressive strength is 3.05 MPa; when urease combines with lignin to improve silt, 4% is the best lignin addition ratio, the compressive strength of the constant humidity sample reaches 1.57 Mpa and the compressive strength of the soaking sample reaches 3.75 MPa; in the dynamic triaxial multi-stage cyclic load test, all samples were cured at constant humidity sample, and in the urease modified silt scheme, 1.0 mol/L was the optimal cement concentration; in the scheme of improving silt with lignin, 3% is the optimal addition ratio; when 1.25 mol/L cementation solution plus urease crude extract is combined with different ratios of lignin in the experimental scheme, 3% is the best lignin addition ratio.
Collapse
Affiliation(s)
- Yongshuai Sun
- College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Xinyan Zhong
- School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
| | - Jianguo Lv
- School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
| | - Guihe Wang
- School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
| | - Ruilin Hu
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
11
|
A Critical Review on the Feasibility of Synthetic Polymers Inclusion in Enhancing the Geotechnical Behavior of Soils. Polymers (Basel) 2022; 14:polym14225004. [PMID: 36433132 PMCID: PMC9694698 DOI: 10.3390/polym14225004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Polymers have attracted widespread interest as soil stabilizers and are proposed as an ecologically acceptable means for enhancing the geotechnical properties of soils. They have found profound applications in diverse fields such as the food industry, textile, medicine, agriculture, construction, and many more. Various polymers are proven to increase soil shear strength, improve volume stability, promote water retention, and prevent erosion, at extremely low concentrations within soils through the formation of a polymer membrane around the soil particles upon hydration. The purpose of this work is to provide an overview of existing research on synthetic polymers for soil improvement. A fundamental evaluation of many synthetic polymers used in soil stabilization is provided, Furthermore, the impact of different polymer types on the geotechnical parameters of treated soil was assessed and compared. Limiting factors like polymer durability and the effect of changing climatic conditions on the engineering behavior of the polymer-treated soils have been critically reviewed. The dominant mechanisms responsible for the alteration in the behavior of polymer-soil admixture are reviewed and discussed. This review article will allow practicing engineers to better understand the intrinsic and extrinsic parameters of targeted polymers before employing them in real-field scenarios for better long-term performance.
Collapse
|
12
|
Effects of Hydroxypropyl Methylcellulose (HPMC) on the Reinforcement of Sand by Microbial-Induced Calcium Carbonate Precipitation (MICP). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microbial-induced calcium carbonate precipitation (MICP) is a new technology used for reinforcing soils through microbial mineralization. However, the existing MICP treatment technology is more suiTable for deeper soils due to its high permeability. In this study, HPMC, a cohesive material combined with Sporosarcina pasteurii-induced calcium carbonate precipitation was used to improve the surface layer of the soil. It was also tested in different contents of bacterial solutions and cementation solutions and with a different number of MICP treatments, and was analyzed and discussed by measuring the surface layer strength, calcium carbonate content generated in the crust, rainfall erosion resistance, wind erosion resistance, and ammonia retention rate of the specimens. The microstructure of the samples was investigated by XRD and SEM. It was shown that the addition of HPMC and increasing the number of MICP treatments were effective in the increase in the calcium carbonate content in the surface crust, but had no effect on the total amount of induced calcium carbonate. The combination of HPMC addition and MICP technology can effectively reduce rainwater scour loss and wind erosion loss, and increase its rainfall erosion resistance and wind erosion resistance. Rainfall losses were reduced by up to 30% in specimens treated with HPMC for MICP technology. When the wind speed was 12 m/s, the maximum mass loss rate of the specimens treated with HPMC for MICP was only 0.828%. The addition of HPMC can effectively improve the ammonia absorption rate and reduce the release of ammonia in the process of MICP technology, which is of great significance for environmental protection. The microstructure showed that the addition of HPMC and the increase in the number of treatments using MICP technology can make the surface structure of the specimens more compact, and the calcium carbonate can more effectively fill the pores and cement the soil particles, while the addition of HPMC may not change the calcium carbonate crystal type.
Collapse
|
13
|
Wang L, Cheng WC, Xue ZF, Hu W. Effects of the Urease Concentration and Calcium Source on Enzyme-Induced Carbonate Precipitation for Lead Remediation. Front Chem 2022; 10:892090. [PMID: 35601549 PMCID: PMC9118015 DOI: 10.3389/fchem.2022.892090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Heavy metal contamination during the rapid urbanization process in recent decades has notably impacted our fragile environments and threatens human health. However, traditional remediation approaches are considered time-consuming and costly, and the effect sometimes does not meet the requirements expected. The present study conducted test tube experiments to reproduce enzyme-induced carbonate precipitation applied to lead remediation under the effects of urease concentration and a calcium source. Furthermore, the speciation and sequence of the carbonate precipitation were simulated using the Visual MINTEQ software package. The results indicated that higher urease concentrations can assure the availability of CO3 2- during the enzyme-induced carbonate precipitation (EICP) process toward benefiting carbonate precipitation. The calcium source determines the speciation of carbonate precipitation and subsequently the Pb remediation efficiency. The use of CaO results in the dissolution of Pb(OH)2 and, therefore, discharges Pb ions, causing some difficulty in forming the multi-layer structure of carbonate precipitation and degrading Pb remediation. The findings of this study are useful in widening the horizon of applications of the enzyme-induced carbonate precipitation technology to heavy metal remediation.
Collapse
Affiliation(s)
- Lin Wang
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wenle Hu
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| |
Collapse
|
14
|
Wang L, Cheng WC, Xue ZF. The Effect of Calcium Source on Pb and Cu Remediation Using Enzyme-Induced Carbonate Precipitation. Front Bioeng Biotechnol 2022; 10:849631. [PMID: 35223803 PMCID: PMC8874146 DOI: 10.3389/fbioe.2022.849631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Heavy metal contamination not only causes threat to human health but also raises sustainable development concerns. The use of traditional methods to remediate heavy metal contamination is however time-consuming, and the remediation efficiency may not meet the requirements as expected. The present study conducted a series of test tube experiments to investigate the effect of calcium source on the lead and copper removals. In addition to the test tube experiments, numerical simulations were performed using Visual MINTEQ software package considering different degrees of urea hydrolysis derived from the experiments. The remediation efficiency degrades when NH4+ and OH− concentrations are not sufficient to precipitate the majority of Pb2+ and Cu2+. It also degrades when CaO turns pH into highly alkaline conditions. The numerical simulations do not take the dissolution of precipitation into account and therefore overestimate the remediation efficiency when subjected to lower Pb(NO3)2 or Cu(NO3)2 concentrations. The findings highlight the potential of applying the enzyme-induced carbonate precipitation to lead and copper remediations.
Collapse
Affiliation(s)
- Lin Wang
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
- *Correspondence: Wen-Chieh Cheng,
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| |
Collapse
|
15
|
Influence of Culture Medium on Cementation of Coarse Grains Based on Microbially Induced Carbonate Precipitation. CRYSTALS 2022. [DOI: 10.3390/cryst12020188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A main challenge in the large-scale application of the microbially induced carbonate precipitation (MICP) technique includes the low efficiency of the cementation of coarse grains. Actually, in the MICP treatment process, the cementation effect of the bonding points was more important than pore filling due to the large porosity for coarse grains. To achieve a better cementation effect at bonding points between coarse particles, the quick formation and growth of a biofilm is necessary. In this study, an optimized medium was proposed to improve the cementation effects for coarse materials. The optimized medium and other different media were used for bio-cementation tests with MICP. The viable cell concentrations, strengths, microscopic characteristics, biofilm contents, and calcium carbonate (CaCO3) contents were used to evaluate the bio-cementation and its effects. In bio-cementation tests, the optimized medium led to increased CaCO3 precipitation at the bonding points and better cementation effects compared to other media. Indeed, the strength of the sample treated with the optimized medium was more than 1.2–4 times higher that of the values for other media. The advantages of the optimized medium were demonstrated via bio-cementation tests.
Collapse
|
16
|
Hu W, Cheng WC, Wen S, Yuan K. Revealing the Enhancement and Degradation Mechanisms Affecting the Performance of Carbonate Precipitation in EICP Process. Front Bioeng Biotechnol 2021; 9:750258. [PMID: 34888301 PMCID: PMC8650497 DOI: 10.3389/fbioe.2021.750258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Given that acid-rich rainfall can cause serious damage to heritage buildings in NW China and subsequently accelerate their aging problem, countermeasures to protect their integrity and also to preserve the continuity of Chinese culture are in pressing need. Enzyme-induced carbonate precipitation (EICP) that modifies the mechanical properties of the soil through enhancing the interparticle bonds by the precipitated crystals and the formation of other carbonate minerals is under a spotlight in recent years. EICP is considered as an alternative to the microbial-induced carbonate precipitation (MICP) because cultivating soil microbes are considered to be challenging in field applications. This study conducts a series of test tube experiments to reproduce the ordinary EICP process, and the produced carbonate precipitation is compared with that of the modified EICP process subjected to the effect of higher MgCl2, NH4Cl, and CaCl2 concentrations, respectively. The modified EICP, subjected to the effect of higher MgCl2 concentrations, performs the best with the highest carbonate precipitation. The enhancement mechanism of carbonate precipitation is well interpreted through elevating the activity of urease enzyme by introducing the magnesium ions. Furthermore, the degradation of carbonate precipitation presents when subjected to the effect of higher NH4Cl concentration. The decreasing activity of urease enzyme and the reverse EICP process play a leading role in degrading the carbonate precipitation. Moreover, when subjected to the effect of higher CaCl2 concentrations, the slower rate of urea hydrolysis and the decreasing activity of urease enzyme are primarily responsible for forming the "hijacking" phenomenon of carbonate precipitation. The findings of this study explore the potential use of the EICP technology for the protection of heritage buildings in NW China.
Collapse
Affiliation(s)
- Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, China.,Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, China
| | - Shaojie Wen
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Ke Yuan
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
17
|
Microbial-Induced Carbonate Precipitation Improves Physical and Structural Properties of Nanjing Ancient City Walls. MATERIALS 2021; 14:ma14195665. [PMID: 34640062 PMCID: PMC8510088 DOI: 10.3390/ma14195665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/01/2022]
Abstract
The preservation and restoration of heritage sites have always been of key focus in the field of cultural relics. Current restoration methods mainly involve physical or chemical techniques, which are in many cases intrusive, destructive, and irreversible. Hereby, we introduce a novel biological strategy (microbial-induced carbonate precipitation (MICP)) to repair natural and simulated surface cracks on six hundred years’ old wall bricks (part of the Nanjing City Min Dynasty ancient wall, China). X-ray micro computed tomography (X-ray micro-CT) was employed to non-destructively visualize the internal structure of the MICP-treated brick cubes. The results showed that MICP can effectively repair both natural and simulated cracks present on the brick’s surface. The compressive strength of the MICP-treated brick cubes was significantly higher than that of the untreated control cubes (33.56 ± 9.07 vs. 19.00 ± 1.98 kN, respectively). MICP significantly increased the softening coefficient and decreased the water absorption rate (p < 0.05), indicating that the water resistance of the wall bricks can be improved after treatment. The 3D images from X-ray micro-CT, a method that could non-destructively assess the internals of such cultural structures, showed that MICP can effectively repair ancient relics, promoting durability and limiting degradation without affecting the structure. X-ray diffraction analyses showed that MICP generates the same calcite form as that of original bricks, indicating that MICP filler is compatible with the ancient city wall brick. These findings are in line with the concept of contemporary heritage preservation.
Collapse
|