1
|
Bodziach K, Staniszewska M, Nehring I, Ożarowska A, Zaniewicz G, Meissner W. Endocrine disrupting bisphenol A, 4-tert-octylphenol and 4-nonylphenol in gonads of long-tailed ducks Clangula hyemalis wintering in the southern Baltic. ENVIRONMENTAL RESEARCH 2024; 243:117772. [PMID: 38029823 DOI: 10.1016/j.envres.2023.117772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
This paper focuses on determining the concentrations of phenol derivatives in the gonads of seabirds and examining the potential factors (age, sex and region) affecting the degree of their bioaccumulation. The study involved assays of bisphenol A (BPA), 4-tert-octylphenol (4-t-OP) and 4-nonylphenol (4-NP) in the gonads of long-tailed ducks taken as bycatch from the Southern Baltic region in 2015-2016. Among phenol derivatives, 4-NP was found to reach the highest concentrations in the gonads of long-tailed ducks, and its concentrations were in the range of <0.1-717.5 ng g-1 dw. The concentrations of BPA and 4-t-OP were similar and amounted to <0.4-181.6 ng g-1 dw and <0.1-192.4 ng g-1 dw respectively. The concentration levels of phenol derivatives in the birds' gonads were similar to the levels which had been observed to have negative endocrine effects in other authors studies. This shows that the studied xenoestrogens can interfere with the reproduction and development of birds. Moreover, adult long-tailed ducks had higher concentrations of phenol derivatives compared to immature ones, possibly resulting from long-term bioaccumulation, as well as from diverse pollution in their respective habitats. Particularly in the case of 4-NP, the median concentrations in gonads of adult birds were 2-fold higher than in immature ones. In turn, among adult long-tailed ducks, phenol derivatives were characterized by higher concentrations in males than in females, with almost 3 times and approx. 3.5 times higher median concentrations of BPA and 4-t-OP, respectively. Lower concentrations of phenol derivatives in female gonads may result from the additional elimination of pollutants from their bodies through the transfer of pollutants from mother to egg. The results show the need for further research on phenol derivatives in the gonads of birds, focusing on their impact on the reproductive system and early development.
Collapse
Affiliation(s)
- Karina Bodziach
- Toxic Substances Transformation Unit, Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Marta Staniszewska
- Toxic Substances Transformation Unit, Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Iga Nehring
- Toxic Substances Transformation Unit, Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Agnieszka Ożarowska
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Zaniewicz
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Włodzimierz Meissner
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
2
|
Jeong SH, Jang JH, Cho HY, Lee YB. Sex differences in 4-tert-octylphenol toxicokinetics: Exploration of sex as an effective covariate through an in vivo modeling approach. Toxicology 2024; 502:153733. [PMID: 38253230 DOI: 10.1016/j.tox.2024.153733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
4-tert-octylphenol (4-tert-OP) is a potentially harmful substance, which is found widely in the environment. Nevertheless, information on the in vivo toxicokinetics of 4-tert-OP is lacking, and quantitative risk assessment studies are urgently needed. Therefore, we aimed to quantitatively identify differences in the toxicokinetics of 4-tert-OP and its distribution among tissues between sexes. To this end, following exposure of male and female rats to 10 or 50 mg/kg 4-tert-OP orally and 4 or 8 mg/kg 4-tert-OP intravenously, we conducted a quantitative analysis of samples using ultra-high performance liquid chromatography-tandem mass spectrometry. The results revealed that the 4-tert-OP plasma concentration profiles differed between sexes; however, systemic absorption of 4-tert-OP through the gastrointestinal tract occurred within 0.5 h of exposure in both sexes. Although small, the excretion percentage of 4-tert-OP in urine and feces was lower in males than females (0.06-0.08% vs. 0.82-1.11% of exposure). Significant sex differences were also confirmed in the tissue distribution patterns of 4-tert-OP, and overall, the average tissue distribution in males was lower than that in females. The distribution of 4-tert-OP to liver, adipose, spleen, kidney, brain, and lung in both sexes was predominant. A covariate exploration modeling approach revealed that sex explained the differences in 4-tert-OP toxicokinetics between sexes. These significant differences in the toxicokinetics and tissue distribution of 4-tert-OP between sexes will be important for the scientific precision human risk assessment of 4-tert-OP.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-si, Jeollanam-do 57922, Republic of Korea; College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon-si 57922, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-si, Jeollanam-do 57922, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
3
|
Nehring I, Staniszewska M. Comparison of prenatal and postnatal exposure to endocrine active phenol derivatives in mammals - Humans and Baltic grey seals. MARINE POLLUTION BULLETIN 2023; 196:115567. [PMID: 37741109 DOI: 10.1016/j.marpolbul.2023.115567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Bisphenol A (BPA), 4-tert-octylphenol (4-t-OP), and 4-nonylphenol (4-NP) are characterised by their endocrine active properties. Their negative effects on the development of the body are doubly important in the reproduction process. The goal was to compare the maternal transfer of phenol derivatives in humans and seals and identify factors that may affect the load of phenol derivatives entering the mother's body, which translates into a risk to the offspring. Phenol derivatives were determined using HPLC-FLD. It was shown that higher concentrations of phenol derivatives in blood or milk were detected in humans (mothers and newborns) compared to concentrations in Baltic seals. This was influenced by external exposure factors, i.e., leaching of phenol derivatives from food packaging or dermal contact. The authors conclude that milk is the main component in the maternal transfer of BPA to the next generation in humans, while blood is a carrier of alkylphenols, particularly 4-tert-octylphenol.
Collapse
Affiliation(s)
- Iga Nehring
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Marta Staniszewska
- Department of Chemical Oceanography and Marine Geology, Faculty of Oceanography and Geography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| |
Collapse
|
4
|
Long Y, Song L, Shu Y, Li B, Peijnenburg W, Zheng C. Evaluating the spatial and temporal distribution of emerging contaminants in the Pearl River Basin for regulating purposes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114918. [PMID: 37086620 DOI: 10.1016/j.ecoenv.2023.114918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Little information is available on how the types, concentrations, and distribution of chemicals have evolved over the years. The objective of the present study is therefore to review the spatial and temporal distribution profile of emerging contaminants with limited toxicology data in the pearl river basin over the years to build up the emerging contaminants database in this region for risk assessment and regulatory purposes. The result revealed that seven groups of emerging contaminants were abundant in this region, and many emerging contaminants had been detected at much higher concentrations before 2011. Specifically, antibiotics, phenolic compounds, and acidic pharmaceuticals were the most abundant emerging contaminants detected in the aquatic compartment, while phenolic compounds were of the most profound concern in soil. Flame retardants and plastics were the most frequently studied chemicals in organisms. The abundance of the field concentrations and frequencies varied considerably over the years, and currently available data can hardly be used for regulation purposes. It is suggested that watershed management should establish a regular monitoring scheme and comprehensive database to monitor the distribution of emerging contaminants considering the highly condensed population in this region. The priority monitoring list should be formed in consideration of historical abundance, potential toxic effects of emerging contaminants as well as the distribution of heavily polluting industries in the region.
Collapse
Affiliation(s)
- Ying Long
- Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lan Song
- Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yaqing Shu
- School of Navigation, Wuhan University of Technology, Wuhan 430063, China
| | - Bing Li
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Willie Peijnenburg
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden RA 2300, the Netherlands
| | - Chunmiao Zheng
- Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Tang J, Zhang C, Zhang J, Jia Y, Fang J. Trophodynamic of endocrine disrupting compounds in the aquatic food webs: Association with hydrophobicity and biota metabolic rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161731. [PMID: 36681335 DOI: 10.1016/j.scitotenv.2023.161731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Increasing concentration of endocrine disrupting compounds (EDCs) are released into the aquatic environment, resulting in irreversible effects on the endocrine and reproductive systems of biota. How the liver enzymes affect metabolic rate of these compounds and thus their structure-related trophic transfer in aquatic food webs remains largely unknown. In this study, the concentrations of seven common EDCs were measured in 15 species of fish, 7 invertebrate species and plankton collected from Liuxi River to Pearl River, South China. The mean ΣEDC concentrations generally were found to increase as follows: plankton (29.59 ng g-1 dw) < invertebrate species (50.69 ng g-1 dw) < fish (122.56 ng g-1 dw), with 4-nonylphenol (4-NP) and bisphenol S (BPS) as the predominant components. Trophic magnification factors (TMFs) values were >1.0 ranged from 1.30 (BPS) to 4.07 (4-NP), indicating trophic magnification potential. Measurement of metabolism and activities of microsomal CYP450 enzymes were performed in the fish liver microsomes of Hypophthalmichthys molitrix ([TL] = 2.27), Cirrhinus mrigala (TL = 3.87) and Odontamblyopus rubicundus (TL = 4.73). TMFs were significantly negatively correlated with the obtained in vitro biotransformation clearance rates (CL in vitro) of EDCs and CYP450 enzymes activities. A multiple linear regression model indicated that biotransformation clearance is a more powerful predictor for TMFs than the hydrophobicity (Kow) to drive changes in the studied aquatic food web trophodynamics.
Collapse
Affiliation(s)
- Jinpeng Tang
- School of Ecology, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Chencheng Zhang
- School of Ecology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jinhua Zhang
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Ji Fang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
6
|
Analysis of Endocrine Disrupting Nonylphenols in Foods by Gas Chromatography-Mass Spectrometry. Foods 2023; 12:foods12020269. [PMID: 36673360 PMCID: PMC9858244 DOI: 10.3390/foods12020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Nonylphenols (NPs) are classified as endocrine-disrupting chemicals (EDCs), which are known to cause disorders in the endocrine systems of organisms. Due to their high lipophilicity and low degradability, these harmful substances are known to accumulate and persist in the environment, and even enter into the food chain. Analytical methods of liquid-liquid extraction using solid-phase extraction for sample clean-up combined with gas chromatography/mass spectrometry were established to determine the presence of NPs in foods. This study aimed to develop and validate these methods using four food matrices representing high-fat and low-fat solid food, as well as high-fat and low-fat liquid food, groups. The single linear isomer 4-n-NP was used to validate the quantification of NPs, which exist in complex isomer mixtures. Our results showed good linearity, with correlation coefficients exceeding 0.998 for all four matrices. The limits of detection and quantification were 0.37-1.79 and 1.11-5.41 μg/kg, respectively. Recovery rates were 86.8-108.6% and 92.6-101.9% for intraday and interday assays, respectively, and the relative standard deviations (RSDs) were below 12% for both assays. The method was applied to analyze 1185 domestic food samples consumed by Koreans, with NPs detected at concentration ranges of 2.57-269.07 μg/kg. Results for each food type over wide concentration ranges indicated that these compounds are highly dependent on the area of cultivation, and are affected by the levels of those contaminants in different environments. The contents of NPs in foods from animal sources were generally higher than those from plant sources, in particular being higher in the intestines than in lean tissue. The present findings could form the basis for determining the level of dietary exposure to NPs and how each food source contributes to it in South Korea.
Collapse
|
7
|
Bodziach K, Staniszewska M, Nehring I, Ożarowska A, Zaniewicz G, Meissner W. Elimination of endocrine disrupting phenolic compounds via feathers and claws in seabirds moulting in the Baltic and Russian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158641. [PMID: 36096226 DOI: 10.1016/j.scitotenv.2022.158641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
This paper investigates the effectiveness of phenol derivatives removal from bird organisms via claws and remiges, and performs a preliminary assessment of the usefulness of these epidermal products for environmental biomonitoring and estimating bird exposure levels. Concentrations of bisphenol A (BPA) and alkylphenols: 4-tert-octylphenol (4-t-OP) and 4-nonylphenol (4-NP) were determined in claws and remiges of long-tailed ducks Clangula hyemalis and razorbills Alca torda, obtained during a by-catch in the winter period (2014-2016) in the Southern Baltic region. For razorbills, the Baltic is a permanent habitat, while long-tailed ducks are migratory and stay in the Southern Baltic only during the non-breeding season. Their remiges are replaced in the Arctic seas of Siberia. The removal of phenol derivatives, depending on the compound and the epidermal product, ranges from 12 % to 34 %. Among these compounds, in both bird species, the highest degree of elimination was observed for 4-NP in remiges (<0.1-656.0 ng.g-1 dw) as well as claws (<0.1-338.6 ng.g-1 dw). On the other hand, the least removed compound in both the long-tailed duck and the razorbill was 4-t-OP. The removal of phenol derivatives from claws in both bird species was at the same level. However, 4-NP concentrations were found to be statistically significantly higher in razorbill remiges compared to those of the long-tailed duck (p < 0.05). Comparison of concentrations in the remiges of the long-tailed duck and the razorbill, moulted in two different environments with different levels of pollution and distances from sources, indicated that the Baltic Sea is approximately 3 times more polluted with 4-NP than the marine areas of the Russian Arctic. This demonstrates the potential for the use of 4-NP and remiges as indicators of environmental pollution with phenol derivatives.
Collapse
Affiliation(s)
- Karina Bodziach
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Marta Staniszewska
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Iga Nehring
- Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agnieszka Ożarowska
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Zaniewicz
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Włodzimierz Meissner
- Ornithology Unit, Department of Vertebrate Ecology & Zoology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
8
|
Bell KS, O’Shaughnessy KL. The development and function of the brain barriers - an overlooked consideration for chemical toxicity. FRONTIERS IN TOXICOLOGY 2022; 4:1000212. [PMID: 36329715 PMCID: PMC9622783 DOI: 10.3389/ftox.2022.1000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
It is well known that the adult brain is protected from some infections and toxic molecules by the blood-brain and the blood-cerebrospinal fluid barriers. Contrary to the immense data collected in other fields, it is deeply entrenched in environmental toxicology that xenobiotics easily permeate the developing brain because these barriers are either absent or non-functional in the fetus and newborn. Here we review the cellular and physiological makeup of the brain barrier systems in multiple species, and discuss decades of experiments that show they possess functionality during embryogenesis. We next present case studies of two chemical classes, perfluoroalkyl substances (PFAS) and bisphenols, and discuss their potential to bypass the brain barriers. While there is evidence to suggest these pollutants may enter the developing and/or adult brain parenchyma, many studies suffer from confounding technical variables which complicates data interpretation. In the future, a more formal consideration of brain barrier biology could not only improve understanding of chemical toxicokinetics but could assist in prioritizing environmental xenobiotics for their neurotoxicity risk.
Collapse
Affiliation(s)
- Kiersten S. Bell
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Katherine L. O’Shaughnessy
- US Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States,*Correspondence: Katherine L. O’Shaughnessy,
| |
Collapse
|
9
|
Liu Y, Le Y, Xu M, Wang W, Chen H, Zhang Q, Wang C. Remodeling on adipocytic physiology of organophosphorus esters in mature adipocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119287. [PMID: 35421551 DOI: 10.1016/j.envpol.2022.119287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The emerging endocrine disruption chemicals organophosphate esters (OPEs) pose high risk of metabolic disruption. However, limited information is available on physiological disturbance of OPEs on adipose, a major endocrine and metabolic organ. In this study, physiological change was investigated after exposing 3T3-L1fully differentiated adipocytes to six OPEs at non-cytotoxic concentrations. We found two chlorinated-OPEs (tris-(2-chloro-1-(chloromethyl) ethyl) phosphate (TDCPP) and tris(2-chloroisopropyl) phosphate (TCPP)) and two alkyl-OPEs (tributyl phosphate (TBP) and tris (2-butoxyethyl) phosphate (TBEP)) induced inflammation-like adipokines (chemoattractant protein 1 and interleukin-6), respectively. Increment of insulin-resistance-related hormones (resistin and leptin) were observed under TDCPP, TCPP, and TBP exposure. Functional and mechanistic investigation revealed that all of the compounds inhibited lipolysis at basal level through dephosphorylated HSLser563, the rate limiting enzyme of lipolysis. Triphenyl phosphate (TPhP), tricresyl phosphate (TCP), TDCPP, TBP and TBEP enhanced glucose uptake at both basal and insulin-stimulated status. We evidenced that impact was independent of the classical pIRSser639/pAKTser473 nor the insulin-independent AMPK pathway. The elevated mRNA of slc2a4 and its transcriptional factor LXRα may, at least partially, explain for the increase of glucose uptake. Given the focus within the endocrine disruption on glands, it would be prudent not to ignore endocrinal impact on adipocytes.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Mengting Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Wanyue Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Hang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
10
|
Denuzière A, Ghersi-Egea JF. Cerebral concentration and toxicity of endocrine disrupting chemicals: The implication of blood-brain interfaces. Neurotoxicology 2022; 91:100-118. [DOI: 10.1016/j.neuro.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
|