1
|
Kwaslema DR, Michael PS. Meta-analysis of nanomaterials and plants interaction under salinity stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14445. [PMID: 39108184 DOI: 10.1111/ppl.14445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 01/29/2025]
Abstract
Salinity stress threatens global food security, requiring novel and sustainable approaches for its mitigation. Over the past decade, nanomaterials (NMs) have emerged as a promising tool to mitigate salinity stress in plants. However, their use has been questioned in terms of whether they really benefit plants or are phytotoxic. Here, we specifically ask whether NMs can help ameliorate plant salinity stress. We use a multivariate meta-analysis of 495 experiments from 70 publications to assess how NMs interact with plants under salinity stress, with a focus on plant biomass accumulation and yield. We also analyzed the influence of NM type, dosage, application method, plant species and families, and growth media on the NM-plant interaction under salinity stress. We demonstrate that NMs enhance plant performance and mitigate salinity stress when applied at lower dosages. However, NMs are phytotoxic at higher dosages and may worsen salinity stress. Also, plant responses to NMs vary across plant species, families, and NM types. We propose a dose-dependent hypothesis to account for the effect of NMs on plant growth under salinity stress and highlight the knowledge gaps and research needs in this field.
Collapse
Affiliation(s)
- Damiano R Kwaslema
- Department of Soil and Geological Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Paulo Sulle Michael
- Department of Soil and Geological Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
2
|
Balraadjsing S, J G M Peijnenburg W, Vijver MG. Building species trait-specific nano-QSARs: Model stacking, navigating model uncertainties and limitations, and the effect of dataset size. ENVIRONMENT INTERNATIONAL 2024; 188:108764. [PMID: 38788418 DOI: 10.1016/j.envint.2024.108764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
A strong need exists for broadly applicable nano-QSARs, capable of predicting toxicological outcomes towards untested species and nanomaterials, under different environmental conditions. Existing nano-QSARs are generally limited to only a few species but the inclusion of species characteristics into models can aid in making them applicable to multiple species, even when toxicity data is not available for biological species. Species traits were used to create classification- and regression machine learning models to predict acute toxicity towards aquatic species for metallic nanomaterials. Afterwards, the individual classification- and regression models were stacked into a meta-model to improve performance. Additionally, the uncertainty and limitations of the models were assessed in detail (beyond the OECD principles) and it was investigated whether models would benefit from the addition of more data. Results showed a significant improvement in model performance following model stacking. Investigation of model uncertainties and limitations highlighted the discrepancy between the applicability domain and accuracy of predictions. Data points outside of the assessed chemical space did not have higher likelihoods of generating inadequate predictions or vice versa. It is therefore concluded that the applicability domain does not give complete insight into the uncertainty of predictions and instead the generation of prediction intervals can help in this regard. Furthermore, results indicated that an increase of the dataset size did not improve model performance. This implies that larger dataset sizes may not necessarily improve model performance while in turn also meaning that large datasets are not necessarily required for prediction of acute toxicity with nano-QSARs.
Collapse
Affiliation(s)
- Surendra Balraadjsing
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, the Netherlands.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, the Netherlands
| |
Collapse
|
3
|
Ma F, Huo Y, Li H, Yang F, Liao J, Han Q, Li Y, Pan J, Hu L, Guo J, Tang Z. New insights into the interaction between duodenal toxicity and microbiota disorder under copper exposure in chicken: Involving in endoplasmic reticulum stress and mitochondrial toxicity. Chem Biol Interact 2022; 366:110132. [PMID: 36030842 DOI: 10.1016/j.cbi.2022.110132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/17/2022]
Abstract
Copper (Cu) has been widely used in industrial agricultural production, but excess use can lead to toxic effect on host physiology, which poses a threaten to public hygiene. However, the relationship between gut microbiota and Cu-induced intestinal toxicity is unclear. Here, we identified that intestinal flora disturbance was related to duodenal toxicity under Cu exposure. We found that excess Cu disturbed gut microbiota homeostasis, resulting in Cu accumulation and intestinal damage. In addition, Cu considerably increased intestinal permeability by reducing expression of tight junction proteins (Claudlin-1, Occludin, and ZO-1). Meanwhile, Cu could induce endoplasmic reticulum stress, mitophagy, and mitochondria-mediated apoptosis in the duodenum, with the evidence by the elevated levels of GRP78, GRP94, LC3Ⅱ/LC3Ⅰ and Caspase-3 protein expression. Correlation analysis showed that Melainabacteria was closely related to tight junction proteins and endoplasmic reticulum stress of duodenum, indicating that disturbance of intestinal flora may aggravate the toxic effect of Cu. Therefore, our results suggest that the destruction of intestinal flora induced by excessive Cu may further lead to intestinal barrier damage, ultimately leading to endoplasmic reticulum stress, mitophagy and apoptosis. This research provides a new insight into interpretation of the interrelationship between microbiota disorder and duodenal toxicity under Cu exposure.
Collapse
Affiliation(s)
- Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Huayu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Zhang H, Wang R, Chen Z, Pu J, Wang J, Zhang H, Yang Y. Nanoscale molybdenum oxide improves plant growth and increases nitrate utilisation in rice (
Oryza sativa
L.). Food Energy Secur 2022. [DOI: 10.1002/fes3.383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Haipeng Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| | - Rui Wang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| | - Zhiqing Chen
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| | - Jialing Pu
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| | - Juanjuan Wang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| | - Yanju Yang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co‐Innovation for Modern Production Technology of Grain Crops Research Institute of Rice Industrial Engineering Technology Yangzhou University Yangzhou China
| |
Collapse
|
5
|
Sun T, Wang S, Ji C, Li F, Wu H. Microplastics aggravate the bioaccumulation and toxicity of coexisting contaminants in aquatic organisms: A synergistic health hazard. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127533. [PMID: 34879523 DOI: 10.1016/j.jhazmat.2021.127533] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
There are ongoing controversies regarding the effects of microplastics (MPs) on the bioaccumulation and toxicity of coexisting contaminants in aquatic organisms. This study aims to quantitatively evaluate this issue based on 870 endpoints from 40 publications. It was shown that the presence of MPs significantly increased the bioaccumulation of co-contaminants by 31%, with high statistical power and without obvious publication bias. The aggravated bioaccumulation was also revealed by the strongly positive correlation between bioconcentration factors in the presence and the absence of MPs. Furthermore, the subgroup/regression analyses indicated that the vector effect of MPs on other chemicals was affected by multiple factors and their interactions, such as particle size and exposure time. In addition, a relatively comprehensive biomarker profile was recompiled from included studies to assess the changes in toxicity caused by combined exposure. Results confirmed that the presence of MPs obviously exacerbated the toxicity of co-contaminants by 18%, manifested by the potentiated cytotoxicity, endocrine disruption, immunotoxicity and oxidative stress, implying a synergistic health hazard. Ultimately, the mismatches between laboratory and field conditions were discussed, and the recommendations for future research were offered.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
6
|
Fluorescent sporopollenin microcapsule modified by BODIPY for sensitive&selective recognition and efficient removal of Cu (II) from aqueous solution. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|