1
|
Xu H, Zhang L, Li Z, Chen Y, Yang B, Zhou Y. Activation of iron oxides through organic matter-induced dissolved oxygen penetration depth dynamics enhances iron-cycling driven ammonium oxidation in microaerobic granular sludge. WATER RESEARCH 2024; 266:122400. [PMID: 39260195 DOI: 10.1016/j.watres.2024.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
The iron redox cycle can enhance anammox in treating low-strength ammonia wastewater. However, maintaining an effective iron redox cycle and suppressing nitrite-oxidizing bacteria in a one-stage partial nitritation and anammox (PN/A) process poses challenges during long-term aeration. We proposed a novel and simple strategy to achieve an efficient iron redox cycle in an iron-mediated anoxic-microaerobic (A/O) process by controlling organic matter (OM) at medium-strength levels (30-110 mg COD/L) in microaerobic granular sludge (MGS)-dominated reactor. The developed A/O process consistently achieved >90 % OM removal and >75 % nitrogen removal. Medium-strength OM varied the penetration depths of dissolved oxygen (DO) in MGS, regulating redox conditions and promoting redox reactions across MGS layers, thus activating accumulated inert iron oxides. Ammonia-oxidizing bacteria (Nitrosomonas), iron-reducing bacteria (e.g., Ignavibacterium, Geobacter), and anammox bacteria (Ca. Kuenenia) coexisted harmoniously in MGS. This coexistence ensured high anammox and Feammox rates along with a robust iron redox cycle, thereby mitigating the adverse impacts of fluctuating DO and OM on one-stage PN/A process stability. The identification of iron reduction-associated genes within Ca. Kuenenia, Ignavibacterium, and Geobacter suggests their potential roles in supporting Feammox coupled in one-stage PN/A process. This study introduces an iron-cycle-driven A/O process as an energy-efficient alternative for simultaneous carbon and nitrogen removal from low-strength wastewater.
Collapse
Affiliation(s)
- Hui Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Liang Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zong Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Yun Chen
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Bo Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Zhou
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
2
|
Choi D, Jung J. Nitrogen removal enhancement through competitive inhibition of nitrite oxidizing bacteria in mainstream partial nitritation/anammox: Anammox seeding and influent C/N ratios. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Cheenakula D, Griebel K, Montag D, Grömping M. Concept development of a mainstream deammonification and comparison with conventional process in terms of energy, performance and economical construction perspectives. Front Microbiol 2023; 14:1155235. [PMID: 37113237 PMCID: PMC10126410 DOI: 10.3389/fmicb.2023.1155235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Deammonification for nitrogen removal in municipal wastewater in temperate and cold climate zones is currently limited to the side stream of municipal wastewater treatment plants (MWWTP). This study developed a conceptual model of a mainstream deammonification plant, designed for 30,000 P.E., considering possible solutions corresponding to the challenging mainstream conditions in Germany. In addition, the energy-saving potential, nitrogen elimination performance and construction-related costs of mainstream deammonification were compared to a conventional plant model, having a single-stage activated sludge process with upstream denitrification. The results revealed that an additional treatment step by combining chemical precipitation and ultra-fine screening is advantageous prior the mainstream deammonification. Hereby chemical oxygen demand (COD) can be reduced by 80% so that the COD:N ratio can be reduced from 12 to 2.5. Laboratory experiments testing mainstream conditions of temperature (8-20°C), pH (6-9) and COD:N ratio (1-6) showed an achievable volumetric nitrogen removal rate (VNRR) of at least 50 gN/(m3∙d) for various deammonifying sludges from side stream deammonification systems in the state of North Rhine-Westphalia, Germany, where m3 denotes reactor volume. Assuming a retained Norganic content of 0.0035 kgNorg./(P.E.∙d) from the daily loads of N at carbon removal stage and a VNRR of 50 gN/(m3∙d) under mainstream conditions, a resident-specific reactor volume of 0.115 m3/(P.E.) is required for mainstream deammonification. This is in the same order of magnitude as the conventional activated sludge process, i.e., 0.173 m3/(P.E.) for an MWWTP of size class of 4. The conventional plant model yielded a total specific electricity demand of 35 kWh/(P.E.∙a) for the operation of the whole MWWTP and an energy recovery potential of 15.8 kWh/(P.E.∙a) through anaerobic digestion. In contrast, the developed mainstream deammonification model plant would require only a 21.5 kWh/(P.E.∙a) energy demand and result in 24 kWh/(P.E.∙a) energy recovery potential, enabling the mainstream deammonification model plant to be self-sufficient. The retrofitting costs for the implementation of mainstream deammonification in existing conventional MWWTPs are nearly negligible as the existing units like activated sludge reactors, aerators and monitoring technology are reusable. However, the mainstream deammonification must meet the performance requirement of VNRR of about 50 gN/(m3∙d) in this case.
Collapse
Affiliation(s)
- Dheeraja Cheenakula
- Institute NOWUM-Energy, FH Aachen, University of Applied Sciences, Jülich, Germany
- *Correspondence: Dheeraja Cheenakula,
| | - Kai Griebel
- Institute of Environmental Engineering, RWTH Aachen, Aachen, Germany
| | - David Montag
- Institute of Environmental Engineering, RWTH Aachen, Aachen, Germany
| | - Markus Grömping
- Institute NOWUM-Energy, FH Aachen, University of Applied Sciences, Jülich, Germany
| |
Collapse
|
4
|
Zhang L, Jiang L, Zhang J, Li J, Peng Y. Enhancing nitrogen removal through directly integrating anammox into mainstream wastewater treatment: Advantageous, issues and future study. BIORESOURCE TECHNOLOGY 2022; 362:127827. [PMID: 36029988 DOI: 10.1016/j.biortech.2022.127827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has great potential to be applied to the process of nitrogen removal from mainstream wastewater. However, directly applying complete anammox to the mainstream is typically hindered by low temperatures, a low ammonia concentration, and high organic matter concentrations. Directly integrating anammox into mainstream treatment by enhancing the in-situ enrichment of anammox bacteria in wastewater treatment plants (WWTPs) could effectively improve the nitrogen removal efficiency and reduce the treatment cost. A certain anammox bacteria abundance in full-scale WWTPs provides the feasibility of directly integrating anammox into mainstream treatment and realizing partial mainstream anammox. The technical development status of partial anammox and the mechanisms of achieving partial mainstream anammox by aeration and organic control are summarized. This review provides an enhanced understanding of this novel technical route of partial mainstream anammox treatment for improving the quality, performance, and prospects for this technology to be used in upgrading WWTPs.
Collapse
Affiliation(s)
- Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ling Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiangtao Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
5
|
Li J, Ran X, Zhou M, Wang K, Wang H, Wang Y. Oxidative stress and antioxidant mechanisms of obligate anaerobes involved in biological waste treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156454. [PMID: 35667421 DOI: 10.1016/j.scitotenv.2022.156454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In-depth understanding of the molecular mechanisms and physiological consequences of oxidative stress is still limited for anaerobes. Anaerobic biotechnology has become widely accepted by the wastewater/sludge industry as a better alternative to more conventional but costly aerobic processes. However, the functional anaerobic microorganisms used in anaerobic biotechnology are frequently hampered by reactive oxygen/nitrogen species (ROS/RNS)-mediated oxidative stress caused by exposure to stressful factors (e.g., oxygen and heavy metals), which negatively impact treatment performance. Thus, identifying stressful factors and understanding antioxidative defense mechanisms of functional obligate anaerobes are crucial for the optimization of anaerobic bioprocesses. Herein, we present a comprehensive overview of oxidative stress and antioxidant mechanisms of obligate anaerobes involved in anaerobic bioprocesses; as examples, we focus on anaerobic ammonium oxidation bacteria and methanogenic archaea. We summarize the primary stress factors in anaerobic bioprocesses and the cellular antioxidant defense systems of functional anaerobes, a consortia of enzymatic and nonenzymatic mechanisms. The dual role of ROS/RNS in cellular processes is elaborated; at low concentrations, they have vital cell signaling functions, but at high concentrations, they cause oxidative damage. Finally, we highlight gaps in knowledge and future work to uncover antioxidant and damage repair mechanisms in obligate anaerobes. This review provides in-depth insights and guidance for future research on oxidative stress of obligate anaerobes to boost the accurate regulation of anaerobic bioprocesses in challenging and changing operating conditions.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Hausherr D, Niederdorfer R, Bürgmann H, Lehmann M, Magyar P, Mohn J, Morgenroth E, Joss A. Successful year-round mainstream partial nitritation anammox: Assessment of effluent quality, performance and N 2O emissions. WATER RESEARCH X 2022; 16:100145. [PMID: 35789883 PMCID: PMC9250041 DOI: 10.1016/j.wroa.2022.100145] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/17/2022] [Accepted: 06/15/2022] [Indexed: 05/04/2023]
Abstract
For two decades now, partial nitritation anammox (PNA) systems were suggested to more efficiently remove nitrogen (N) from mainstream municipal wastewater. Yet to date, only a few pilot-scale systems and even fewer full-scale implementations of this technology have been described. Process instability continues to restrict the broad application of PNA. Especially problematic are insufficient anammox biomass retention, the growth of undesired aerobic nitrite-oxidizers, and nitrous oxide (N2O) emissions. In this study, a two-stage mainstream pilot-scale PNA system, consisting of three reactors (carbon pre-treatment, nitritation, anammox - 8 m3 each), was operated over a year, treating municipal wastewater. The aim was to test whether both, robust autotrophic N removal and high effluent quality, can be achieved throughout the year. A second aim was to better understand rate limiting processes, potentially affecting the overall performance of PNA systems. In this pilot study, excellent effluent quality, in terms of inorganic nitrogen, was accomplished (average effluent concentrations: 0.4 mgNH4-N/L, 0.1 mgNO2-N/L, 0.9 mgNO3-N/L) even at wastewater temperatures previously considered problematic (as low as 8 °C). N removal was limited by nitritation rates (84 ± 43 mgNH4-N/L/d), while surplus anammox activity was observed at all times (178 ± 43 mgN/L/d). Throughout the study, nitrite-oxidation was maintained at a low level (<2.5% of ammonium consumption rate). Unfortunately, high N2O emissions from the nitritation stage (1.2% of total nitrogen in the influent) were observed, and, based on natural isotope abundance measurements, could be attributed to heterotrophic denitrification. In situ batch experiments were conducted to identify the role of dissolved oxygen (DO) and organic substrate availability in N2O emission-mitigation. The addition of organic substrate, to promote complete denitrification, was not successful in decreasing N2O emission, but increasing the DO from 0.3 to 2.9 mgO2/L decreased N2O emissions by a factor of 3.4.
Collapse
Affiliation(s)
- D. Hausherr
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- Corresponding author:
| | - R. Niederdorfer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 6047, Switzerland
| | - H. Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 6047, Switzerland
| | - M.F. Lehmann
- Department of Environmental Sciences, University of Basel, Aquatic and Isotope Biogeochemistry, Basel 4056, Switzerland
| | - P. Magyar
- Department of Environmental Sciences, University of Basel, Aquatic and Isotope Biogeochemistry, Basel 4056, Switzerland
| | - J. Mohn
- Empa, Swiss Federal Institute for Materials Science and Technology, Laboratory for Air Pollution / Environmental Technology, Dübendorf 8600, Switzerland
| | - E. Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- ETH Zürich, Institute of Environmental Engineering, Zürich 8093, Switzerland
| | - A. Joss
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
7
|
Mehrani MJ, Azari M, Teichgräber B, Jagemann P, Schoth J, Denecke M, Mąkinia J. Performance evaluation and model-based optimization of the mainstream deammonification in an integrated fixed-film activated sludge reactor. BIORESOURCE TECHNOLOGY 2022; 351:126942. [PMID: 35257883 DOI: 10.1016/j.biortech.2022.126942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to model and optimize mainstream deammonification in an integrated fixed-film activated sludge (IFAS) pilot plant under natural seasonal temperature variations. The effect of gradually decreasing temperature on the performance was evaluated during a winter season and a transition period to summer conditions, and the correlation of the performance parameters was investigated using principal component analysis (PCA). The optimization of intermittent aeration in the long-term (30 days) dynamic conditions with on/off ratio and dissolved oxygen (DO) set-point control was used to maximize the N-removal rate (NRR) and N-removal efficiency (NRE). Optimization results (DO set-point of 0.2-0.25 mgO2/L, and on/off ratio of 0.05) increased the NRE and NRR of total inorganic N (daily average) from 30% to > 50% and 15 gN/m3d to 25 gN/m3d, respectively. This novel long-term optimization strategy is a powerful tool for enhancing the efficiency in mainstream deammonification.
Collapse
Affiliation(s)
- Mohamad-Javad Mehrani
- Department of Urban Water- and Waste Management, University of Duisburg-Essen, Universitätsstraße 15, 45141, Essen, Germany; Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Mohammad Azari
- Department of Aquatic Environmental Engineering, Institute for Water and River Basin Management, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Karlsruhe 76131, Germany.
| | - Burkhard Teichgräber
- EMSCHERGENOSSENSCHAFT and LIPPEVERBAND, Kronprinzenstrasse 24, 45128, Essen, Germany
| | - Peter Jagemann
- EMSCHERGENOSSENSCHAFT and LIPPEVERBAND, Kronprinzenstrasse 24, 45128, Essen, Germany
| | - Jens Schoth
- EMSCHERGENOSSENSCHAFT and LIPPEVERBAND, Kronprinzenstrasse 24, 45128, Essen, Germany
| | - Martin Denecke
- Department of Urban Water- and Waste Management, University of Duisburg-Essen, Universitätsstraße 15, 45141, Essen, Germany
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| |
Collapse
|