1
|
Wang C, Gao F, Gao S, Nian Z, Han X. Upflow blanket filter anammox (UBFA) system treating low-nitrogen wastewater: high-efficient nitrogen removal, granules formation, N 2O emission, and microbial succession. Bioprocess Biosyst Eng 2025; 48:395-412. [PMID: 39652236 DOI: 10.1007/s00449-024-03116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/27/2024] [Indexed: 02/27/2025]
Abstract
This research provides an important approach for low-nitrogen wastewater treatment through anaerobic ammonium oxidation (Anammox), and Anammox granule sludge (AnGS) in the Upflow. Blanket Filter Anammox (UBFA) system through shortening the hydraulic retention time was successfully cultivated. The percentage of medium granules (1.0-2.0 mm) with the highest Anammox activity increased from 0 to 28.5%, and the proportion of flocs (0-200 μm) reduced from 84.5% to 17.6%. Through the multidimensional analysis of AnGS, the relationship between AnGS and EPS secretion, low SVI, high PN/PS, multiple filamentous bacteria, and AnAOB were explored. Microelectrode tracing tests demonstrated that the main anammox reaction active layer was 0-1500 μm, and the highest activity was observed at 200-400 μm, whereas denitrification activity and N2O production were mainly distributed in the granules deep layer of 1500-2500 μm. The research showed that Candidatus Brocadia and Candidatus Kuenenia were the predominant anammox species in the UBFA system, while the abundance of AnAOB was higher in medium granules.
Collapse
Affiliation(s)
- Chongyang Wang
- Power China Kunming Survey, Design and Research Institute Company Limited, Kunming, 650051, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Feng Gao
- Power China Kunming Survey, Design and Research Institute Company Limited, Kunming, 650051, China.
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Sheng Gao
- Power China Kunming Survey, Design and Research Institute Company Limited, Kunming, 650051, China
| | - Zheng Nian
- Power China Kunming Survey, Design and Research Institute Company Limited, Kunming, 650051, China
| | - Xintong Han
- Power China Kunming Survey, Design and Research Institute Company Limited, Kunming, 650051, China
| |
Collapse
|
2
|
Liu L, Yang K, Li L, Liu W, Yuan H, Han Y, Zhang E, Zheng Y, Jia Y. The aeration and dredging stimulate the reduction of pollution and carbon emissions in a sediment microcosm study. Sci Rep 2024; 14:26172. [PMID: 39478047 PMCID: PMC11525881 DOI: 10.1038/s41598-024-75790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Sediment dredging and aeration are used as important technical measures to remediate internal loading of sediment in polluted rivers. However, previous studies have overlooked the impact of dredging and aeration on Greenhouse gases (GHGs) emission. We established three aeration rate(six different aeration intervals), one dredging treatment to investigate the effect of aeration and dredging on pollutant removals and CO2, CH4 and N2O emissions. The results indicated the pollutants and GHGs at 2.4, 3.4, 4.4 L min-1 aeration rates reached collaborative emission reduction after more than 3 h or within 1.5 h. Meanwhile, the GHGs fluxes after aeration decreased with the increasing aeration rate, with the mean CO2, CH4 and N2O fluxes of 69.74, 0.16, 7.53 mg m-2 h-1 and 33.64, 0.09, 4.17 mg m-2 h-1 before and after aeration, respectively. With respect to dredging, the pollutants and N2O reached synergic effects between reduction of pollution and carbon emissions after 1 h dredging. Specifically, the CO2 and CH4 emissions after dredging was lower than those of before dredging, but the N2O emissions was higher than those of before dredging. In addition, our analysis revealed that the dissolved oxygen (DO), oxidation-reduction potential (ORP), available potassium (AK) and ammoniacal nitrogen (NH4+-N) in the sediment influenced GHGs fluxes at the water-air interface in the aeration. Our study indicated moderate aeration and dredging can achieve the synergistic effect in reducing pollution and carbon emissions.
Collapse
Affiliation(s)
- Lixiang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Ke Yang
- Experimental Testing Team of Jiangxi Geological Bureau, Nanchang, 330006, China
| | - Liangzhong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
- Guangdong Provincial Key Laboratory of Renewable Energy, Guangzhou, 510640, China.
| | - Weiwei Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Renewable Energy, Guangzhou, 510640, China
| | - Yongwei Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Enxiang Zhang
- Chongqing Research Academy of Environmental Science, Chongqing, 401336, China
| | - Yuping Zheng
- Guangzhou Transport Planning Research Institute, Guangzhou, 510030, China
| | - Yajuan Jia
- Baotou Ecological Environment Technology Center, Baotou, 014010, China
| |
Collapse
|
3
|
Li M, Luan Y, Qin Z, Lu D. Startup of a large height-diameter ratio bioreactor by alternate feeding: performance of partial nitrification and enrichment of ammonia-oxidizing bacteria (AOB). ENVIRONMENTAL TECHNOLOGY 2024; 45:2171-2179. [PMID: 36602056 DOI: 10.1080/09593330.2023.2165458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In order to solve the complicated control of dissolved oxygen (DO) for partial nitrification in bioreactors treating high NH 4 + - N wastewater, a large height-diameter ratio anammox pre-reactor system was developed. And in this reactor, NO 2 - - N accumulation rate can reach 85.76% by alternate feeding with high NH 4 + - N wastewater (150 mg NH 4 + - N / L ) and low NH 4 + - N wastewater (50 mg c) with low DO (0.19 mg/L-0.62 mg/L). Based on 16S rRNA identification technology, it was found that Nitrosomonas had a significant effect on NH 4 + - N oxidization in this study. And when the reactor treated higher concentration wastewater (250 mg NH 4 + - N / L ), the growth rate of Nitrosomonas was higher than that of Nitrospira (nitrite-oxidizing bacteria, NOB), which was conducive to improving the NO 2 - - N accumulation rate and realizing partial nitrification stably. It was also found that the material exchange frequency of the microbial flora during alternate feeding with different NH 4 + - N concentration wastewaters was higher than that during feeding with higher NH 4 + - N concentration wastewater (250 mg/L) by Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolism pathways analysis. This study can provide valuable insights and lay the foundation for building anammox pre-reactors.
Collapse
Affiliation(s)
- Ming Li
- School of Eco-Environment, Hebei University, Baoding, People's Republic of China
- College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Yongqing Luan
- School of Eco-Environment, Hebei University, Baoding, People's Republic of China
| | - Zhe Qin
- School of Eco-Environment, Hebei University, Baoding, People's Republic of China
| | - Da Lu
- School of Eco-Environment, Hebei University, Baoding, People's Republic of China
| |
Collapse
|
4
|
An Z, Gao X, Shao B, Zhang Q, Ding J, Peng Y. Synchronous Achievement of Advanced Nitrogen Removal and N 2O Reduction in the Anoxic Zone in the AOA Process for Low C/N Municipal Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2335-2345. [PMID: 38271692 DOI: 10.1021/acs.est.3c06746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous flow processes for the in situ determination of N2O emissions during low C/N municipal wastewater treatment have rarely been reported. The anaerobic/aerobic/anoxic (AOA) process has recently shown promising potential in energy savings and advanced nitrogen removal, but it still needs to be comprehensively explored in relation to N2O emissions for its carbon reduction advantages. In this study, a novel gas-collecting continuous flow reactor was designed to comprehensively evaluate the emissions of N2O from the gas and liquid phases of the AOA process. Additionally, the measures of enhancing endogenous denitrification (ED) and self-enriching anaerobic ammonium oxidation (Anammox) were employed to optimize nitrogen removal and achieve N2O reduction in the anoxic zone. The results showed that enhanced ED coupled with Anammox led to an increase in the nitrogen removal efficiency (NRE) from 67.65 to 81.96%, an enhancement of the NO3- removal rate from 1.76 mgN/(L h) to 3.99 mgN/(L h), and the N2O emission factor in the anoxic zone decreased from 0.28 to 0.06%. Impressively, ED eliminated 91.46 ± 2.47% of the dissolved N2O from the upstream aerobic zone, and the dissolved N2O in the effluent was reduced to less than 0.01 mg/L. This study provides valuable strategies for fully evaluating N2O emissions and N2O reduction from the AOA process.
Collapse
Affiliation(s)
- Zeming An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Baishuo Shao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ding
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
5
|
An Z, Zhang Q, Gao X, Ding J, Shao B, Peng Y. Nitrous oxide emissions in novel wastewater treatment processes: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 391:129950. [PMID: 37926354 DOI: 10.1016/j.biortech.2023.129950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The proliferation of novel wastewater treatment processes has marked recent years, becoming particularly pertinent in light of the strive for carbon neutrality. One area of growing attention within this context is nitrous oxide (N2O) production and emission. This review provides a comprehensive overview of recent research progress on N2O emissions associated with novel wastewater treatment processes, including Anammox, Partial Nitrification, Partial Denitrification, Comammox, Denitrifying Phosphorus Removal, Sulfur-driven Autotrophic Denitrification and n-DAMO. The advantages and challenges of these processes are thoroughly examined, and various mitigation strategies are proposed. An interesting angle that delve into is the potential of endogenous denitrification to act as an N2O sink. Furthermore, the review discusses the potential applications and rationale for novel Anammox-based processes to reduce N2O emissions. The aim is to inform future technology research in this area. Overall, this review aims to shed light on these emerging technologies while encouraging further research and development.
Collapse
Affiliation(s)
- Zeming An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ding
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Baishuo Shao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
6
|
Chen S, Fan SQ, Xie GJ, Xu Y, Liang C, Peng L. Model-based assessment of mainstream nitrate/nitrite-dependent anaerobic methane oxidation and Anammox process in granular sludge at low temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166633. [PMID: 37659562 DOI: 10.1016/j.scitotenv.2023.166633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
The process of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) coupled with anaerobic ammonium oxidation (Anammox) is one of groundbreaking discoveries for nitrogen removal and methane emission reduction from wastewater simultaneously. Yet its treatment of mainstream wastewater at low temperature is still a major challenge. In this work, a one-dimensional granular sludge model incorporating Arrhenius conversion for temperature effects was constructed to depict the relationships among n-DAMO microorganisms and Anammox. The model framework was successfully evaluated with 380 days measurement data from a membrane granular sludge reactor (MGSR) operated at temperature of 20-10 °C and fed with ammonium and nitrite. The model could satisfactorily predict the kinetics of nitrogen removal rates, effluent nitrogen concentrations and biomass fractions in MGSR at varying temperatures. Despite the decrease in microbial activity of functional microorganisms, the coupled n-DAMO and Anammox process based on granule system in mainstream wastewater treatment achieved a TN removal efficiency of about 98 % and a stable nitrogen removal rate of 0.55 g L-1 d-1. The model developed is expected to facilitate fundamentally understanding the underlying mechanisms of the coupled process and provide proposals for its practical engineering application in wastewater treatment plants.
Collapse
Affiliation(s)
- Shi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Sheng-Qiang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| |
Collapse
|
7
|
Hausherr D, Niederdorfer R, Bürgmann H, Lehmann M, Magyar P, Mohn J, Morgenroth E, Joss A. Successful year-round mainstream partial nitritation anammox: Assessment of effluent quality, performance and N 2O emissions. WATER RESEARCH X 2022; 16:100145. [PMID: 35789883 PMCID: PMC9250041 DOI: 10.1016/j.wroa.2022.100145] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/17/2022] [Accepted: 06/15/2022] [Indexed: 05/04/2023]
Abstract
For two decades now, partial nitritation anammox (PNA) systems were suggested to more efficiently remove nitrogen (N) from mainstream municipal wastewater. Yet to date, only a few pilot-scale systems and even fewer full-scale implementations of this technology have been described. Process instability continues to restrict the broad application of PNA. Especially problematic are insufficient anammox biomass retention, the growth of undesired aerobic nitrite-oxidizers, and nitrous oxide (N2O) emissions. In this study, a two-stage mainstream pilot-scale PNA system, consisting of three reactors (carbon pre-treatment, nitritation, anammox - 8 m3 each), was operated over a year, treating municipal wastewater. The aim was to test whether both, robust autotrophic N removal and high effluent quality, can be achieved throughout the year. A second aim was to better understand rate limiting processes, potentially affecting the overall performance of PNA systems. In this pilot study, excellent effluent quality, in terms of inorganic nitrogen, was accomplished (average effluent concentrations: 0.4 mgNH4-N/L, 0.1 mgNO2-N/L, 0.9 mgNO3-N/L) even at wastewater temperatures previously considered problematic (as low as 8 °C). N removal was limited by nitritation rates (84 ± 43 mgNH4-N/L/d), while surplus anammox activity was observed at all times (178 ± 43 mgN/L/d). Throughout the study, nitrite-oxidation was maintained at a low level (<2.5% of ammonium consumption rate). Unfortunately, high N2O emissions from the nitritation stage (1.2% of total nitrogen in the influent) were observed, and, based on natural isotope abundance measurements, could be attributed to heterotrophic denitrification. In situ batch experiments were conducted to identify the role of dissolved oxygen (DO) and organic substrate availability in N2O emission-mitigation. The addition of organic substrate, to promote complete denitrification, was not successful in decreasing N2O emission, but increasing the DO from 0.3 to 2.9 mgO2/L decreased N2O emissions by a factor of 3.4.
Collapse
Affiliation(s)
- D. Hausherr
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- Corresponding author:
| | - R. Niederdorfer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 6047, Switzerland
| | - H. Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, 6047, Switzerland
| | - M.F. Lehmann
- Department of Environmental Sciences, University of Basel, Aquatic and Isotope Biogeochemistry, Basel 4056, Switzerland
| | - P. Magyar
- Department of Environmental Sciences, University of Basel, Aquatic and Isotope Biogeochemistry, Basel 4056, Switzerland
| | - J. Mohn
- Empa, Swiss Federal Institute for Materials Science and Technology, Laboratory for Air Pollution / Environmental Technology, Dübendorf 8600, Switzerland
| | - E. Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- ETH Zürich, Institute of Environmental Engineering, Zürich 8093, Switzerland
| | - A. Joss
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
8
|
Lin Z, Ma K, Yang Y. Nitrous Oxide Emission from Full-Scale Anammox-Driven Wastewater Treatment Systems. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070971. [PMID: 35888061 PMCID: PMC9317218 DOI: 10.3390/life12070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
Wastewater treatment plants (WWTPs) are important contributors to global greenhouse gas (GHG) emissions, partly due to their huge emission of nitrous oxide (N2O), which has a global warming potential of 298 CO2 equivalents. Anaerobic ammonium-oxidizing (anammox) bacteria provide a shortcut in the nitrogen removal pathway by directly transforming ammonium and nitrite to nitrogen gas (N2). Due to its energy efficiency, the anammox-driven treatment has been applied worldwide for the removal of inorganic nitrogen from ammonium-rich wastewater. Although direct evidence of the metabolic production of N2O by anammox bacteria is lacking, the microorganisms coexisting in anammox-driven WWTPs could produce a considerable amount of N2O and hence affect the sustainability of wastewater treatment. Thus, N2O emission is still one of the downsides of anammox-driven wastewater treatment, and efforts are required to understand the mechanisms of N2O emission from anammox-driven WWTPs using different nitrogen removal strategies and develop effective mitigation strategies. Here, three main N2O production processes, namely, hydroxylamine oxidation, nitrifier denitrification, and heterotrophic denitrification, and the unique N2O consumption process termed nosZ-dominated N2O degradation, occurring in anammox-driven wastewater treatment systems, are summarized and discussed. The key factors influencing N2O emission and mitigation strategies are discussed in detail, and areas in which further research is urgently required are identified.
Collapse
|