1
|
Zhang T, Wu Z, Ge L, Shang J, Huang Y, Liu Y, Huang L. Acidithiobacillus species mediated mineral weathering promotes lead immobilization in ferric-silica microstructures at sulfidic tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124492. [PMID: 38960117 DOI: 10.1016/j.envpol.2024.124492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Immobilization and stabilization of heavy metals (HMs) in sulfidic and metallic tailings are critical to long-term pollution control and sustainable ecological rehabilitation. This study aims to unravel immobilization mechanisms of Pb (Ⅱ) in the neoformed hardpan structure resulting from Acidithiobacillus spp. accelerated bioweathering of sulfides in the presence of silicates. It was found that the bioweathered mineral composite exhibited an elevated Pb (Ⅱ) adsorption capacity compared to that of natural weathered mineral composite. A suit of microspectroscopic techniques such as synchrotron-based X-ray Absorption Spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Field-Emission Scanning Electron Microscope (FE-SEM) indicated that secondary Fe-bearing minerals, functional groups, and surface properties in the neoformed hardpan were key factors contributing to Pb (Ⅱ) adsorption and immobilization in ferric-silica microstructures. The underlying mechanisms might involve surface adsorption-complexation, dissolution-precipitation, electrostatic attraction, and ion exchange. Microbial communities within the muscovite groups undergoing bioweathering processes demonstrated distinctive survival strategies and community composition under the prevailing geochemical conditions. This proof of concept regarding Pb (Ⅱ) immobilization in microbial transformed mineral composite would provide the basis for scaling up trials for developing field-feasible methodology to management HMs pollution in sulfidic and metallic tailings in near future.
Collapse
Affiliation(s)
- Tingrui Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Zeqi Wu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Liqiang Ge
- National Research Center for Geoanalysis, Beijing, 100037, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yuanfang Huang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yunjia Liu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
2
|
Yang Q, Lu X, Chen W, Chen Y, Gu C, Jie S, Lei P, Gan M, Yin H, Zhu J. Geochip 5.0 insights into the association between bioleaching of heavy metals from contaminated sediment and functional genes expressed in consortiums. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49575-49588. [PMID: 39080164 DOI: 10.1007/s11356-024-34506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
The heavy metal contamination in river and lake sediments endangers aquatic ecosystems. Herein, the feasibility of applying different exogenous mesophile consortiums in bioleaching multiple heavy metal-contaminated sediments from Xiangjiang River was investigated, and a comprehensive functional gene array (GeoChip 5.0) was used to analyze the functional gene expression to reveal the intrinsic association between metal solubilization efficiency and consortium structure. Among four consortiums, the Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans consortium had the highest solubilization efficiencies of Cu, Pb, Zn, and Cd after 15 days, reaching 50.33, 29.93, 47.49, and 79.65%, while Cu, Pb, and Hg had the highest solubilization efficiencies after 30 days, reaching 63.67, 45.33, and 52.07%. Geochip analysis revealed that 31,346 genes involved in different biogeochemical processes had been detected, and the systems of 15 days had lower proportions of unique genes than those of 30 days. Samples from the same stage had more genes overlapping with each other than those from different stages. Plentiful metal-resistant and organic remediation genes were also detected, which means the metal detoxification and organic pollutant degradation had happened with the bioleaching process. The Mantel test revealed that Pb, Zn, As, Cd, and Hg solubilized from sediment influenced the structure of expressed microbial functional genes during bioleaching. This work employed GeoChip to demonstrate the intrinsic association between functional gene expression of mesophile consortiums and the bioleaching efficiency of heavy metal-contaminated sediment, and it provides a good reference for future microbial consortium design and remediation of river and lake sediments.
Collapse
Affiliation(s)
- Quanliu Yang
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Xianren Lu
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Wei Chen
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Yi Chen
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Chunyao Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
| | - Shiqi Jie
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
| | - Pan Lei
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK, 73019, USA
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, South Lushan Road 932, Changsha, 410083, China.
| |
Collapse
|
3
|
Mao J, Zheng Z, Ma L, Wang H, Wang X, Zhu F, Xue S, Srivastava P, Sapsford DJ. Polymetallic contamination drives indigenous microbial community assembly dominated by stochastic processes at Pb-Zn smelting sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174575. [PMID: 38977087 DOI: 10.1016/j.scitotenv.2024.174575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Indigenous microbial communities in smelting areas are crucial for maintaining fragile ecosystem functions. However, the community assembly process and their responses to polymetallic pollution are poorly understood, especially the taxa in each bin from the amplicons that contributed to the assembly process. Herein, microbial diversity, co-occurrence patterns, assembly process and the intrinsic mechanisms across contamination gradients at a typical PbZn smelting site were systematically unravelled by high-throughput sequencing. The results showed a consistent compositional profile among the indigenous communities across sampling sites, wherein genera KD4-96 from Chloroflexi and Sphingomonas from Proteobacteria emerged as the most abundant taxa. Network modularity of the high- and middle-contaminated communities at Pb and Zn smelting sites was >0.44, indicating that community populations were clustered into modules to resist high heavy metal stress. Stochastic processes dominated the community assembly, with the greatest contribution from drift (DR), which was significantly correlated with Pb, Zn, Cr and Cu contents. What's particular was that the DR-controlled bins were dominated by Proteobacteria (typical r-strategists), while the HoS-controlled bins were by Chloroflexi (typical K-strategists). Furthermore, the proportion of DR in the bins dominated by Sphingomonadaceae (phylum Proteobacteria) increased gradually with the increase of heavy metal contents. These discoveries provide essential insights for community control in restoring and mitigating soil degradation at PbZn smelting sites.
Collapse
Affiliation(s)
- Jialing Mao
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zikui Zheng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Liyuan Ma
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom.
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xingjie Wang
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | | | - Devin J Sapsford
- School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| |
Collapse
|
4
|
Huo X, Liu J, Hong X, Bai H, Chen Z, Che J, Yang H, Tong Y, Feng S. Enhancing column bioleaching of chalcocite by isolated iron metabolism partners Leptospirillum ferriphilum/Acidiphilium sp. coupling with systematically utilizing cellulosic waste. BIORESOURCE TECHNOLOGY 2024; 394:130193. [PMID: 38081468 DOI: 10.1016/j.biortech.2023.130193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 02/04/2024]
Abstract
The iron metabolism partners Leptospirillum ferriphilum and Acidiphilium sp. were screened from industrial bioheap site. An integrated multi-stage strategy was proposed to improve chalcolite column bioleaching coupling with synergistical utilization of cellulosic waste such as acid hydrolysate of aquatic plants. L. ferriphilum was used to accelerate the initial iron metabolism, and Acidithiobacillus caldus maintained a lower pH in the middle stage, while Acidiphilium sp. greatly inhibited jarosite passivation in the later stage. Meanwhile, L. ferriphilum (38.3 %) and Acidiphilium sp. (37.0 %) dominated the middle stage, while the abundance of Acidiphilium sp. reached 63.5 % in the later stage. The ferrous, sulfate ion and biomass were improved and the transcriptional levels of some biofilm and morphology related genes were significantly up-regulated. The final Cu2+ concentration reached 325.5 mg·L-1, improved by 43.8 %. Moreover, Canonical Correlation Analysis (CCA) analysis between bioleaching performance, iron/sulfur metabolism and community verified the important role of iron metabolism partners.
Collapse
Affiliation(s)
- Xingyu Huo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianna Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xianjing Hong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Haochen Bai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zongling Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jinming Che
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yanjun Tong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shoushuai Feng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Huang S, Li H, Ma L, Liu R, Li Y, Wang H, Lu X, Huang X, Wu X, Liu X. Insertion sequence contributes to the evolution and environmental adaptation of Acidithiobacillus. BMC Genomics 2023; 24:282. [PMID: 37231368 DOI: 10.1186/s12864-023-09372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The genus Acidithiobacillus has been widely concerned due to its superior survival and oxidation ability in acid mine drainage (AMD). However, the contribution of insertion sequence (IS) to their biological evolution and environmental adaptation is very limited. ISs are the simplest kinds of mobile genetic elements (MGEs), capable of interrupting genes, operons, or regulating the expression of genes through transposition activity. ISs could be classified into different families with their own members, possessing different copies. RESULTS In this study, the distribution and evolution of ISs, as well as the functions of the genes around ISs in 36 Acidithiobacillus genomes, were analyzed. The results showed that 248 members belonging to 23 IS families with a total of 10,652 copies were identified within the target genomes. The IS families and copy numbers among each species were significantly different, indicating that the IS distribution of Acidithiobacillus were not even. A. ferrooxidans had 166 IS members, which may develop more gene transposition strategies compared with other Acidithiobacillus spp. What's more, A. thiooxidans harbored the most IS copies, suggesting that their ISs were the most active and more likely to transpose. The ISs clustered in the phylogenetic tree approximately according to the family, which were mostly different from the evolutionary trends of their host genomes. Thus, it was suggested that the recent activity of ISs of Acidithiobacillus was not only determined by their genetic characteristics, but related with the environmental pressure. In addition, many ISs especially Tn3 and IS110 families were inserted around the regions whose functions were As/Hg/Cu/Co/Zn/Cd translocation and sulfur oxidation, implying that ISs could improve the adaptive capacities of Acidithiobacillus to the extremely acidic environment by enhancing their resistance to heavy metals and utilization of sulfur. CONCLUSIONS This study provided the genomic evidence for the contribution of IS to evolution and adaptation of Acidithiobacillus, opening novel sights into the genome plasticity of those acidophiles.
Collapse
Affiliation(s)
- Shanshan Huang
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Huiying Li
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Liyuan Ma
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China.
| | - Rui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Yiran Li
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Hongmei Wang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Xiaolu Lu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Xinping Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
| | - Xinhong Wu
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| |
Collapse
|
6
|
Gao W, Liu P, Ye Z, Zhou J, Wang X, Huang X, Deng X, Ma L. Divergent prokaryotic microbial assembly, co-existence patterns and functions in surrounding river sediments of a Cu-polymetallic deposit in Tibet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158192. [PMID: 35988602 DOI: 10.1016/j.scitotenv.2022.158192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The exploitation of polymetallic deposits produces large amounts of mine drainage, which poses great challenges to the surrounding aquatic ecosystem. However, the prokaryotic microbial community assembly and co-existence patterns in the polluted area are poorly understood, especially in high-altitude localities. Herein, we investigated the prokaryotic microbial assembly, co-existence patterns and their potential functional responses in surrounding river sediments of a Cu-polymetallic deposit in Tibet. The sediments from mine drainage and surrounding tributaries exhibited distinct geochemical gradients, especially the changes in Cu content. The microbial community structure changed significantly, accompanied by decreased richness and diversity with increased Cu content. Interestingly, the relative abundances of some potential functional bacteria (e.g., Planctomycetota) actually increased as the Cu levels raised. In low contaminated area, ecological drift was the most important assembly process, whereas deterministic processes gained importance with pollution levels. Meanwhile, negative interactions in co-occurrence networks were more frequent with higher modularity and reduced keystone taxa in high contaminated area. Notably, the functions related to ABC transporters and quorum sensing (QS) were more abundant with high Cu content, which helped bacteria work together to cope with the stressful environment. Taken together, the physicochemical gradients dominated by Cu content drove the distribution, assembly and co-existence patterns of microbial communities in surrounding river sediments of a Cu-polymetallic deposit. These findings provide new insights into the maintenance mechanisms of prokaryotic microbial communities in response to heavy metal stress at high altitudes.
Collapse
Affiliation(s)
- Weikang Gao
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Liu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zhihang Ye
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Jianwei Zhou
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xingjie Wang
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xinping Huang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xiaoyu Deng
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Liyuan Ma
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China.
| |
Collapse
|
7
|
Insights into Adaptive Mechanisms of Extreme Acidophiles Based on Quorum Sensing/Quenching-Related Proteins. mSystems 2022; 7:e0149121. [PMID: 35400206 PMCID: PMC9040811 DOI: 10.1128/msystems.01491-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Quorum sensing (QS) is a unique mechanism for microorganisms to coordinate their activities through intercellular communication, including four main types of autoinducer-1 (AI-1, namely, N-acyl homoserine lactone [AHL]), AI-2, AI-3, and diffusible signaling factor [DSF]) based on signaling molecules. Quorum quenching (QQ) enzymes can disrupt the QS phenomenon by inactivating signaling molecules. QS is proposed to regulate biofilm formation in extremely acidic environments, but the QS/QQ-related genomic features in most acidophilic bacteria are still largely unknown. Here, genome annotation of 83 acidophiles from the genera Acidithiobacillus, Leptospirillum, Sulfobacillus, and Acidiphilium altogether revealed the existence of AI-1, AI-3, DSF, and AhlD (AHL degradation enzyme). The conservative investigation indicated that some QS/QQ-related proteins harbored key residues or motifs, which were necessary for their activities. Phylogenetic analysis showed that LuxI/R (AI-1 synthase/receptor), QseE/F (two-component system of AI-3), and RpfC/G (two-component system of DSF) exhibited similar evolutionary patterns within each pair. Meanwhile, proteins clustered approximately according to the species taxonomy. The widespread Acidithiobacillus strains, especially A. ferrooxidans, processed AI-1, AI-3, and DSF systems as well as the AhlD enzyme, which were favorable for their mutual information exchange and collective regulation of gene expression. Some members of the Sulfobacillus and Acidiphilium without AHL production capacity contained the AhlD enzyme, which may evolve for niche competition, while DSF in Leptospirillum and Acidithiobacillus could potentially combine with the cyclic diguanylate (c-di-GMP) pathway for self-defense and niche protection. This work will shed light on our understanding of the extent of communication networks and adaptive evolution among acidophiles via QS/QQ coping with environmental changes. IMPORTANCE Understanding cell-cell communication QS is highly relevant for comprehending the regulatory and adaptive mechanisms among acidophiles in extremely acidic ecosystems. Previous studies focused on the existence and functionality of a single QS system in several acidophilic strains. Four representative genera were selected to decipher the distribution and role of QS and QQ integrated with the conservative and evolutionary analysis of related proteins. It was implicated that intra- or intersignaling circuits may work effectively based on different QS types to modulate biofilm formation and energy metabolism among acidophilic microbes. Some individuals could synthesize QQ enzymes for specific QS molecular inactivation to inhibit undesirable acidophile species. This study expanded our knowledge of the fundamental cognition and biological roles underlying the dynamical communication interactions among the coevolving acidophiles and provided a novel perspective for revealing their environmental adaptability.
Collapse
|
8
|
Ma L, Yang W, Huang S, Liu R, Li H, Huang X, Xiong J, Liu X. Integrative Assessments on Molecular Taxonomy of Acidiferrobacter thiooxydans ZJ and Its Environmental Adaptation Based on Mobile Genetic Elements. Front Microbiol 2022; 13:826829. [PMID: 35250944 PMCID: PMC8889020 DOI: 10.3389/fmicb.2022.826829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acidiferrobacter spp. are facultatively anaerobic acidophiles that belong to a distinctive Acidiferrobacteraceae family, which are similar to Ectothiorhodospiraceae phylogenetically, and are closely related to Acidithiobacillia class/subdivision physiologically. The limited genome information has kept them from being studied on molecular taxonomy and environmental adaptation in depth. Herein, Af. thiooxydans ZJ was isolated from acid mine drainage (AMD), and the complete genome sequence was reported to scan its genetic constitution for taxonomic and adaptative feature exploration. The genome has a single chromosome of 3,302,271 base pairs (bp), with a GC content of 63.61%. The phylogenetic tree based on OrthoANI highlighted the unique position of Af. thiooxydans ZJ, which harbored more unique genes among the strains from Ectothiorhodospiraceae and Acidithiobacillaceae by pan-genome analysis. The diverse mobile genetic elements (MGEs), such as insertion sequence (IS), clustered regularly interspaced short palindromic repeat (CRISPR), prophage, and genomic island (GI), have been identified and characterized in Af. thiooxydans ZJ. The results showed that Af. thiooxydans ZJ may effectively resist the infection of foreign viruses and gain functional gene fragments or clusters to shape its own genome advantageously. This study will offer more evidence of the genomic plasticity and improve our understanding of evolutionary adaptation mechanisms to extreme AMD environment, which could expand the potential utilization of Af. thiooxydans ZJ as an iron and sulfur oxidizer in industrial bioleaching.
Collapse
Affiliation(s)
- Liyuan Ma
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Weiyi Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shanshan Huang
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Rui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Huiying Li
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xinping Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Junming Xiong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
9
|
Zhu XY, Yang XN, Luo Y, Redshaw C, Liu M, Tao Z, Xiao X. Construction of a Supramolecular Fluorescence Sensor from Water‐soluble Pillar[5]arene and 1‐Naphthol for Recognition of Metal Ions. ChemistrySelect 2021. [DOI: 10.1002/slct.202103744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Yi Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Xi Nan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Carl Redshaw
- Department of Chemistry University of Hull Cottingham Rd Hull HU6 7RX, U.K
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| |
Collapse
|