1
|
Ariana A, Cozzarelli I, Danforth C, McDevitt B, Rosofsky A, Vorhees D. Pathways for Potential Exposure to Onshore Oil and Gas Wastewater: What We Need to Know to Protect Human Health. GEOHEALTH 2025; 9:e2024GH001263. [PMID: 40182626 PMCID: PMC11966568 DOI: 10.1029/2024gh001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
Produced water is a chemically complex waste stream generated during oil and gas development. Roughly four trillion liters were generated onshore in the United States in 2021 (ALL Consulting, 2022, https://www.gwpc.org/wp-content/uploads/2021/09/2021_Produced_Water_Volumes.pdf). Efforts are underway to expand historic uses of produced water to offset freshwater needs in water-stressed regions, avoid induced seismic activity associated with its disposal, and extract commodities. Understanding the potential exposures from current and proposed produced water uses and management practices can help to inform health-protective practices. This review summarizes what is known about potential human exposure to produced water from onshore oil and gas development in the United States. We synthesize 236 publications to create a conceptual model of potential human exposure that illustrates the current state of scientific inquiry and knowledge. Exposure to produced water can occur following its release to the environment through spills or leaks during its handling and management. Exposure can also arise from authorized releases, including permitted discharges to surface water, crop irrigation, and road treatment. Knowledge gaps include understanding the variable composition and toxicity of produced water released to the environment, the performance of treatment methods, migration pathways through the environment that can result in human exposure, and the significance of the exposures for human and ecosystem health. Reducing these uncertainties may help in realizing the benefits of produced water use while simultaneously protecting human health.
Collapse
Affiliation(s)
| | | | | | - Bonnie McDevitt
- Geology, Energy & Minerals Science CenterU.S. Geological SurveyRestonVAUSA
| | | | | |
Collapse
|
2
|
Khan R, Akhi SZ, Khan MHR, Sultana S, Aldawood S, Basir MS, Parvez MS, Naher K, Habib MA, Idris AM, Roy DK. Comparison of environmental radioactivity in road dust between a city and a megacity: geo-environmental evaluation, health risks, and potential remediation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:344-362. [PMID: 39919233 DOI: 10.1093/etojnl/vgae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 10/06/2024] [Indexed: 02/09/2025]
Abstract
This pioneering study represents a comprehensive comparative analysis of naturally occurring radioactive materials (NORMs: 226Ra (≈238U),232Th, 40K) on the roadside dust samples collected from a coastal city (Khulna) and a highly urban megacity (Dhaka), Bangladesh. The corresponding radioactivity was calculated based on Instrumental Neutron Activation Analysis of elemental abundances (uranium [U], thorium [Th], and potassium [K]). Averagen=30 radioactivity levels of 226Ra (≈238U), 232Th, and 40K in the road dust of Khulna city were 46.82 ± 24, 74.79 ± 25, and 541.14 ± 160.8, whereas in Dhaka city, they were 84.4 ± 13, 126 ± 11, and 549 ± 48 (Bq.kg-1), respectively. Khulna city had 1.3, 2.5, and 1.4 times greater 226Ra (≈238U), 232Th, and 40K radioactivity than the global average values, respectively. For Dhaka city, the following values were 2.42, 4.2, and 1.4 times elevated. The levels of radioactivity in Dhaka city are significantly higher than those in Khulna city; however, both cities have exceeded the world average values. The mechanisms for the enrichment and dispersion of NORMs from their fundamental source (surface soil) were studied, considering waterlogging, relative solubility-controlled leaching and translocation, climate conditions, and aerodynamic fractionations (dry and wet air deposition). The computation of standard radiological indices indicates risks to human health. Respiratory harm can be inflicted by α-particles originating from the radioactive decay products of 232Th and 238U. In addition to public awareness, policymakers should prioritize limiting the evolution of dust particles to mitigate the associated health risks.
Collapse
Affiliation(s)
- Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka-1349, Bangladesh
| | - Sayma Zahan Akhi
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka-1349, Bangladesh
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur Cantonment, Dhaka-1216, Bangladesh
| | | | - Sadiya Sultana
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka-1349, Bangladesh
- Physics Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Md Samium Basir
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka-1349, Bangladesh
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur Cantonment, Dhaka-1216, Bangladesh
| | | | - Kamrun Naher
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka-1349, Bangladesh
| | - Md Ahosan Habib
- Geological Survey of Bangladesh, Segunbaghicha, Dhaka-1000, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha-62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha-62529, Saudi Arabia
| | - Dhiman Kumer Roy
- Department of Geology and Mining, University of Barishal, Barishal-8254, Bangladesh
| |
Collapse
|
3
|
McDevitt B, Tasker TL, Coyte R, Blondes MS, Stewart BW, Capo RC, Hakala JA, Vengosh A, Burgos WD, Warner NR. Utica/Point Pleasant brine isotopic compositions (δ 7Li, δ 11B, δ 138Ba) elucidate mechanisms of lithium enrichment in the Appalachian Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174588. [PMID: 38981550 DOI: 10.1016/j.scitotenv.2024.174588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Global Li production will require a ∼500 % increase to meet 2050 projected energy storage demands. One potential source is oil and gas wastewater (i.e., produced water or brine), which naturally has high total dissolved solids (TDS) concentrations, that can also be enriched in Li (>100 mg/L). Understanding the sources and mechanisms responsible for high naturally-occurring Li concentrations can aid in efficient targeting of these brines. The isotopic composition (δ7Li, δ11B, δ138Ba) of produced water and core samples from the Utica Shale and Point Pleasant Formation (UPP) in the Appalachian Basin, USA indicates that depth-dependent thermal maturity and water-rock interaction, including diagenetic clay mineral transformations, likely control Li concentrations. A survey of Li content in produced waters throughout the USA indicates that Appalachian Basin brines from the Marcellus Shale to the UPP have the potential for economic resource recovery.
Collapse
Affiliation(s)
- Bonnie McDevitt
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States of America.
| | - Travis L Tasker
- Saint Francis University, Department of Environmental Engineering, Loretto, PA, United States of America
| | - Rachel Coyte
- New Mexico Institute of Mining and Technology, Earth and Environmental Science Department, Socorro, NM, United States of America
| | - Madalyn S Blondes
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States of America
| | - Brian W Stewart
- University of Pittsburgh, Department of Geology and Environmental Science, Pittsburgh, PA, United States of America
| | - Rosemary C Capo
- University of Pittsburgh, Department of Geology and Environmental Science, Pittsburgh, PA, United States of America
| | - J Alexandra Hakala
- Department of Energy, National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States of America
| | - Avner Vengosh
- Duke University, Nicholas School of the Environment, Durham, NC, United States of America
| | - William D Burgos
- The Pennsylvania State University, Department of Civil and Environmental Engineering, State College, PA, United States of America
| | - Nathaniel R Warner
- The Pennsylvania State University, Department of Civil and Environmental Engineering, State College, PA, United States of America
| |
Collapse
|
4
|
Farnan J, Eck A, Kearney A, Dorman FL, Ismail H, Chase E, Liu X, Warner NR, Burgos WD. Oil and gas produced waters fail to meet beneficial reuse recommendations for use as dust suppressants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170807. [PMID: 38336068 DOI: 10.1016/j.scitotenv.2024.170807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Produced water from conventional oil and gas wells (O&G PW) is beneficially reused as an inexpensive alternative to commercial dust suppressants which minimize inhalable particulate matter (PM10) from unpaved roads. The efficacy and environmental impacts of using O&G PW instead of commercial products have not been extensively investigated, although O&G PW has been used for dust suppression for decades and often has elevated concentrations of environmental pollutants. In this study, the effectiveness of O&G PW is compared to commercial products under variable humidity conditions by measuring total generated PM10 emissions from treated road aggregate discs. To measure environmental impacts, model roadbeds were treated with six O&G PW and commercial products then subjected to a simulated two-year, 24-h storm event. Generated runoff water was collected and characterized. In efficacy studies, O&G PW offered variable dust reduction (10-85 %) compared to rainwater controls under high humidity (50 %) conditions but performed similarly or worse than controls when humidity was low (20 %). Conversely, all but two commercial products reduced dust emissions by over 90 % regardless of humidity. In rainfall-runoff experiments, roads treated with O&G PWs and CaCl2 Brine generated runoff that was hypersaline, indicating that mobilization of soluble salts could contribute to freshwater salinization. Though most runoff concentrations were highest from roadbeds treated with CaCl2 Brine, runoff from roadbeds treated with O&G PW had the highest concentrations of combined radium (83.6 pCi/L), sodium (3560 mg/L), and suspended solids (5330 mg/L). High sodium concentrations likely dispersed clay particles, which increased road mass loss by 47.2 kg solids/km/storm event compared to rainwater controls. Roadbeds treated with CaCl2 Brine, which had low sodium concentrations, reduced solid road mass loss by 98.1 kg solids/km/storm event. Based on this study, O&G PW do not perform as well as commercial products and pose unique risks to environmental health.
Collapse
Affiliation(s)
- James Farnan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Andrew Eck
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Andrew Kearney
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Frank L Dorman
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Hassan Ismail
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Eric Chase
- Center for Dirt and Gravel Road Studies, Larson Transportation Institute, Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Xiaofeng Liu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Nathaniel R Warner
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - William D Burgos
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Wang X, Yang J, Li X. Study on characteristics and microscopic mechanism of composite environment-friendly dust suppressant for urban construction site soil fugitive dust based on response surface methodology optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41954-41969. [PMID: 36640236 DOI: 10.1007/s11356-023-25224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Soil fugitive dust pollution caused by urban construction sites is a significant problem. To improve the dust suppression efficiency on the urban construction sites, hydroxypropyl guar (HPG), dodecyl dimethyl amine oxide (OB-2), and hydroxypropyl methylcellulose (HPMC) were selected as individual components of the composite dust suppressant using a single-factor test. The response surface methodology (RSM) was used to determine the optimal mixing proportions. After preparation, the characteristics of the composite dust suppressant were tested. Fourier-transform infrared spectroscopy and scanning electron microscopy (SEM) were used to characterize the composite dust suppressant and explore its mechanism. The results showed that 0.327% HPG, 0.6% OB-2, and 0.5% HPMC were the best compound concentrations. Under optimum conditions, the viscosity of the composite dust suppressant was 151.1 [Formula: see text], penetration time was 61.4 s, and water retention rate was 30.67%. Compared with traditional dust control by spraying water, it showed better resistance to evaporation at high temperatures and better wind erosion resistance. The antievaporation rate was 39.42% at 60 °C. After 11 d of continuous wind erosion at level 7, the wind erosion resistance rate was as high as 98.24%. The reason for the excellent dust suppression effect of the composite dust suppressant is that the methyl and hydroxyl groups in the solution diffuse to the surface of the soil fugitive dust particles using Brownian motion and gradually approach the corresponding groups in the soil fugitive dust particles. When the distance between the two reaches 10 [Formula: see text], adsorption occurs, causing small dust particles to stick together. Because of the stability of the covalent bonds in the methyl and hydroxyl groups, a stable solidified layer is formed on the soil fugitive dust surface after the evaporation of the composite dust inhibitor solution, thereby avoiding secondary dust. In addition, the composite dust suppressant is noncorrosive and friendly to the construction site environment. Therefore, the composite dust suppressant can effectively reduce soil fugitive dust, alleviate environmental pollution, and provide a reference for preventing and controlling soil fugitive dust on urban construction sites and preparing composite environment-friendly dust suppressants.
Collapse
Affiliation(s)
- Xiaonan Wang
- College of Safety Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Junni Yang
- College of Safety Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiang Li
- College of Safety Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| |
Collapse
|
6
|
McDevitt B, Jubb AM, Varonka MS, Blondes MS, Engle MA, Gallegos TJ, Shelton JL. Dissolved organic matter within oil and gas associated wastewaters from U.S. unconventional petroleum plays: Comparisons and consequences for disposal and reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156331. [PMID: 35640759 DOI: 10.1016/j.scitotenv.2022.156331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Wastewater generated during petroleum extraction (produced water) may contain high concentrations of dissolved organics due to their intimate association with organic-rich source rocks, expelled petroleum, and organic additives to fluids used for hydraulic fracturing of unconventional (e.g., shale) reservoirs. Dissolved organic matter (DOM) within produced water represents a challenge for treatment prior to beneficial reuse. High salinities characteristic of produced water, often 10× greater than seawater, coupled to the complex DOM ensemble create analytical obstacles with typical methods. Excitation-emission matrix spectroscopy (EEMS) can rapidly characterize the fluorescent component of DOM with little impact from matrix effects. We applied EEMS to evaluate DOM composition in 18 produced water samples from six North American unconventional petroleum plays. Represented reservoirs include the Eagle Ford Shale (Gulf Coast Basin), Wolfcamp/Cline Shales (Permian Basin), Marcellus Shale and Utica/Point Pleasant (Appalachian Basin), Niobrara Chalk (Denver-Julesburg Basin), and the Bakken Formation (Williston Basin). Results indicate that the relative chromophoric DOM composition in unconventional produced water may distinguish different lithologies, thermal maturity of resource types (e.g., heavy oil vs. dry gas), and fracturing fluid compositions, but is generally insensitive to salinity and DOM concentration. These results are discussed with perspective toward DOM influence on geochemical processes and the potential for targeted organic compound treatment for the reuse of produced water.
Collapse
Affiliation(s)
- Bonnie McDevitt
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA 20192, United States.
| | - Aaron M Jubb
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA 20192, United States
| | - Matthew S Varonka
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA 20192, United States
| | - Madalyn S Blondes
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA 20192, United States
| | - Mark A Engle
- Department of Geological Sciences, The University of Texas at El Paso, El Paso, TX 79968, United States
| | - Tanya J Gallegos
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA 20192, United States
| | - Jenna L Shelton
- U.S. Geological Survey, National Cooperative Geologic Mapping Program, Reston, VA 20192, United States
| |
Collapse
|
7
|
Magnuson M, Stilman T, Serre S, Archer J, James R, Xia X, Lawrence M, Tamargo E, Raveh-Amit H, Sharon A. Part 2: Stabilization/Containment of Radiological Particle Contamination to Enhance First Responder, Early Phase Worker, and Public Safety. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:1-23. [PMID: 37850155 PMCID: PMC10581405 DOI: 10.3390/app12083861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The application of stabilization technologies to a radiologically contaminated surface has the potential for reducing the spread of contamination and, as a result, decreasing worker exposure to radiation. Three stabilization technologies, calcium chloride (CaCl2), flame retardant Phos-Chek® MVP-Fx, and Soil2O™ were investigated to evaluate their ability to reduce the resuspension and tracking of radiological contamination during response activities such as vehicle and foot traffic. Concrete pavers, asphalt pavers, and sandy soil walking paths were used as test surfaces, along with simulated fallout material (SFM) tagged with radiostrontium (Sr-85) applied as the contaminant. Radiological activities were measured using gamma spectrometry before and after simulated vehicle operation and foot traffic experiments, conducted with each stabilization technology and without application as a nonstabilized control. These measurements were acquired separately for each combination of surface and vehicle/foot traffic experiment. The resulting data describes the extent of SFM removed from each surface onto the tires or boots, the extent of SFM transferred to adjacent surfaces, and the residual SFM remaining on the tires or boots after each experiment. The type of surface and response worker actions influenced the stabilization results. For instance, when walked over, less than 2% of particles were removed from nonstabilized concrete, 4% from asphalt, and 40% of the particles were removed from the sand surface. By contrast, for vehicle experiments, ~40% of particles were again removed from the sand, but 7% and 15% from concrete and asphalt, respectively. In most cases, the stabilization technologies did provide improved stabilization. The improvement was related to the type of surface, worker actions, and stabilizer; a statistical analysis of these variables is presented. Overall, the results suggest an ability to utilize these technologies during the planning and implementation of response activities involving foot and vehicle traffic. In addition, resuspension of aerosolizable range SFM was monitored during walking path foot traffic experiments, and all stabilizing agents decreased the measured radioactivity, with the Soil2O™ decrease being 3 fold, whereas the CaCl2 and Phos-Chek MVP-Fx surfaces generated no detectable radioactivity. Overall, these results suggest that the stabilization technologies decrease the availability of particles respirable by response workers under these conditions.
Collapse
Affiliation(s)
- Matthew Magnuson
- EPA Office of Research and Development, Homeland Security Materials and Management Division, 26 W Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Terry Stilman
- EPA Region 4, 61 Forsyth St., SW, Atlanta, GA 30303, USA
| | - Shannon Serre
- EPA Office of Land and Emergency Management, Consequence Management Advisory Division, WJC-N, Washington, DC 20002, USA
| | - John Archer
- EPA Office of Research and Development, Homeland Security Materials and Management Division, 26 W Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Ryan James
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - Xiaoyan Xia
- Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | | | - Erin Tamargo
- Irregular Warfare Technical Support Directorate, Alexandria, VA 22350, USA
| | - Hadas Raveh-Amit
- Department of Chemistry, Nuclear Research Centre Negev, P.O. Box 9001, Beer Sheva 8419000, Israel
| | - Avi Sharon
- Environmental Research Unit, Nuclear Research Centre Negev, P.O. Box 9001, Beer Sheva 8419000, Israel
| |
Collapse
|