1
|
Xia F, Chen Z, Tian E, Mo J. A super sandstorm altered the abundance and composition of airborne bacteria in Beijing. J Environ Sci (China) 2024; 144:35-44. [PMID: 38802236 DOI: 10.1016/j.jes.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 05/29/2024]
Abstract
Sandstorm, which injects generous newly emerging microbes into the atmosphere covering cities, adversely affects the air quality in built environments. However, few studies have examined the change of airborne bacteria during severe sandstorm events. In this work, we analyzed the airborne bacteria during one of the strongest sandstorms in East Asia on March 15th, 2021, which affected large areas of China and Mongolia. The characteristics of the sandstorm were compared with those of the subsequent clean and haze days. The composition of the bacterial community of air samples was investigated using quantitative polymerase chain reaction (qPCR) and high-throughput sequencing technology. During the sandstorm, the particulate matter (PM) concentration and bacterial richness were extremely high (PM2.5: 207 µg/m3; PM10: 1630 µg/m3; 5700 amplicon sequence variants/m3). In addition, the sandstorm brought 10 pathogenic bacterial genera to the atmosphere, posing a grave hazard to human health. As the sandstorm subsided, small bioaerosols (0.65-1.1 µm) with a similar bacterial community remained suspended in the atmosphere, bringing possible long-lasting health risks.
Collapse
Affiliation(s)
- Fanxuan Xia
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Enze Tian
- Songshan Lake Materials Laboratory, Dongguan 523808, China; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jinhan Mo
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University), Ministry of Education, Shenzhen 518060, China; Key Laboratory of Eco Planning & Green Building (Tsinghua University), Ministry of Education, Beijing 100084, China
| |
Collapse
|
2
|
Zhang Y, Wang Y, Han Y, Zhu S, Yan X. Impact of haze on potential pathogens in surface bioaerosol in urban environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124164. [PMID: 38754692 DOI: 10.1016/j.envpol.2024.124164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Air quality considerably affects bioaerosol dynamics within the atmosphere. Frequent haze events, with their associated alterations in bioaerosol composition, may pose potential health risks. This study investigated the microbial diversity, community structure, and factors of PM2.5 within an urban environment. We further examined the impact of haze on potentially pathogenic bacteria in bioaerosols, and analyzed the sources of haze pollution. Key findings revealed that the highest levels of microbial richness and diversity were associated with lightly polluted air conditions. While the overall bacterial community structure remained relatively consistent across different air quality levels, the relative abundance of specific bacterial taxa exhibited variations. Meteorological and environmental conditions, particularly sulfur dioxide, nitrogen dioxide, and carbon monoxide, exerted a greater influence on bacterial diversity and community structure compared to the physicochemical properties of the PM2.5 particles themselves. Notably, haze events were observed to strengthen interactions among airborne pathogens. Stable carbon isotope analysis suggested that coal combustion and automobile exhaust were likely to represent the primary source of haze during winter months. These findings indicate that adoption of clean energy alternatives such as natural gas and electricity, and the use of public transportation, is crucial to mitigate particle and harmful pollutant emissions, thereby protecting public health.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuai Zhu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
3
|
Sajjad B, Hussain S, Rasool K, Hassan M, Almomani F. Comprehensive insights into advances in ambient bioaerosols sampling, analysis and factors influencing bioaerosols composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122473. [PMID: 37659632 DOI: 10.1016/j.envpol.2023.122473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
While the study of bioaerosols has a long history, it has garnered heightened interest in the past few years, focusing on both culture-dependent and independent sampling and analysis approaches. Observations have been made regarding the seasonal fluctuations in microbial communities and their connection to particular ambient atmospheric factors. The study of airborne microbial communities is important in public health and atmospheric processes. Nevertheless, the establishment of standardized protocols for evaluating airborne microbial communities and utilizing microbial taxonomy as a means to identify distinct bioaerosols sources and seasonal patterns remains relatively unexplored. This article discusses the challenges and limitations of ambient bioaerosols sampling and analysis, including the lack of standardized methods and the heterogeneity of sources. Future prospects in the field of bioaerosols, including the use of high-throughput sequencing technologies, omics studies, spectroscopy and fluorescence-based monitoring to provide comprehensive incite on metabolic capacity, and activity are also presented. Furthermore, the review highlights the factors that affect bioaerosols composition, including seasonality, atmospheric conditions, and pollution levels. Overall, this review provides a valuable resource for researchers, policymakers, and stakeholders interested in understanding and managing bioaerosols in various environments.
Collapse
Affiliation(s)
- Bilal Sajjad
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar; Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Sabir Hussain
- Department of Environmental Science, Institute of Space Technology, Islamabad, Pakistan
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| | - Mujtaba Hassan
- Department of Environmental Science, Institute of Space Technology, Islamabad, Pakistan
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| |
Collapse
|
4
|
Zoran M, Savastru R, Savastru D, Tautan M, Tenciu D. Linkage between Airborne Particulate Matter and Viral Pandemic COVID-19 in Bucharest. Microorganisms 2023; 11:2531. [PMID: 37894189 PMCID: PMC10609195 DOI: 10.3390/microorganisms11102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The long-distance spreading and transport of airborne particulate matter (PM) of biogenic or chemical compounds, which are thought to be possible carriers of SARS-CoV-2 virions, can have a negative impact on the incidence and severity of COVID-19 viral disease. Considering the total Aerosol Optical Depth at 550 nm (AOD) as an atmospheric aerosol loading variable, inhalable fine PM with a diameter ≤2.5 µm (PM2.5) or coarse PM with a diameter ≤10 µm (PM10) during 26 February 2020-31 March 2022, and COVID-19's five waves in Romania, the current study investigates the impact of outdoor PM on the COVID-19 pandemic in Bucharest city. Through descriptive statistics analysis applied to average daily time series in situ and satellite data of PM2.5, PM10, and climate parameters, this study found decreased trends of PM2.5 and PM10 concentrations of 24.58% and 18.9%, respectively compared to the pre-pandemic period (2015-2019). Exposure to high levels of PM2.5 and PM10 particles was positively correlated with COVID-19 incidence and mortality. The derived average PM2.5/PM10 ratios during the entire pandemic period are relatively low (<0.44), indicating a dominance of coarse traffic-related particles' fraction. Significant reductions of the averaged AOD levels over Bucharest were recorded during the first and third waves of COVID-19 pandemic and their associated lockdowns (~28.2% and ~16.4%, respectively) compared to pre-pandemic period (2015-2019) average AOD levels. The findings of this research are important for decision-makers implementing COVID-19 safety controls and health measures during viral infections.
Collapse
Affiliation(s)
- Maria Zoran
- C Department, National Institute of R&D for Optoelectronics, 409 Atomistilor Street, MG5, 077125 Magurele, Romania; (R.S.); (D.S.); (M.T.); (D.T.)
| | | | | | | | | |
Collapse
|
5
|
Zhao Y, Yang Y, Dong F, Dai Q. The characteristics of nano-micron calcite particles/common bacteria complex and its interfacial interaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:72807-72820. [PMID: 37178294 PMCID: PMC10182550 DOI: 10.1007/s11356-023-27522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/07/2023] [Indexed: 05/15/2023]
Abstract
Based on the composite pollution of atmospheric microbial aerosol, this paper selects the calcite/bacteria complex as the research object which was prepared by calcite particles and two common strains of bacteria (Escherichia coli, Staphylococcus aureus) in the solution system. The morphology, particle size, surface potential, and surface groups of the complex were explored by modern analysis and testing methods, with an emphasis on the interfacial interaction between calcite and bacteria. The SEM, TEM, and CLSM results showed that the morphology of the complex could be divided into three types: bacteria adhering to the surface or edge of micro-CaCO3, bacteria aggregating with nano-CaCO3, and single nano-CaCO3 wrapping bacteria. The complex's particle size was about 2.07 ~ 192.4 times larger than the original mineral particles, and the nano-CaCO3/bacteria complex's particle size variation was caused by the fact that nano-CaCO3 has agglomeration in solution. The surface potential of the micro-CaCO3/bacteria complex (isoelectric point pH = 3.0) lies between micro-CaCO3 and bacteria, while the surface potential of the nano-CaCO3/bacteria complex (isoelectric point pH = 2.0) approaches the nano-CaCO3. The complex's surface groups were based primarily on the infrared characteristics of calcite particles, accompanied by the infrared characteristics of bacteria, displaying the interfacial interaction from the protein, polysaccharides, and phosphodiester groups of bacteria. The interfacial action of the micro-CaCO3/bacteria complex is mainly driven by electrostatic attraction and hydrogen bonding force, while the nano-CaCO3/bacteria complex is guided by surface complexation and hydrogen bonding force. The increase in the β-fold/α-helix ratio of the calcite/S. aureus complex indicated that the secondary structure of bacterial surface proteins was more stable and the hydrogen bond effect was strong than the calcite/E. coli complex. The findings are expected to provide basic data for the mechanism research of atmospheric composite particles closer to the real environment.
Collapse
Affiliation(s)
- Yulian Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang City, 621010, Sichuan, China
| | - Yujie Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang City, 621010, Sichuan, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang City, 621010, Sichuan, China.
| | - Qunwei Dai
- Fundamental Science On Nuclear Waste and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang City, 621010, Sichuan, China
| |
Collapse
|
6
|
Long T, Ye Z, Tang Y, Shi J, Wen J, Chen C, Huo Q. Comparison of bacterial community structure in PM 2.5 during hazy and non-hazy periods in Guilin, South China. AEROBIOLOGIA 2023; 39:87-103. [PMID: 36568442 PMCID: PMC9762634 DOI: 10.1007/s10453-022-09777-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/09/2022] [Indexed: 05/19/2023]
Abstract
UNLABELLED In recent years, significant efforts have been made to study changes in the levels of air pollutants at regional and urban scales, and changes in bioaerosols during air pollution events have attracted increasing attention. In this study, the bacterial structure of PM2.5 was analysed under different environmental conditions during hazy and non-hazy periods in Guilin. A total of 32 PM2.5 samples were collected in December 2020 and July 2021, and the microbial community structures were analysed using high-throughput sequencing methods. The results show that air pollution and climate change alter the species distribution and community diversity of bacteria in PM2.5, particularly Sphingomonas and Pseudomonas. The structure of the bacterial community composition is related to diurnal variation, vertical height, and urban area and their interactions with various environmental factors. This is a comprehensive study that characterises the variability of bacteria associated with PM2.5 in a variety of environments, highlighting the impacts of environmental effects on the atmospheric microbial community. The results will contribute to our understanding of haze trends in China, particularly the relationship between bioaerosol communities and the urban environment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10453-022-09777-0.
Collapse
Affiliation(s)
- Tengfa Long
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Ziwei Ye
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Yanchun Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Jiaxin Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Jianhui Wen
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
- Guilin Ecological Environmental Monitoring Center, Guilin, 541004 China
| | - Chunqiang Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| | - Qiang Huo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006 China
- College of Environment and Resources, Guangxi Normal University, Guilin, 541006 China
| |
Collapse
|
7
|
Qi Y, Chen Y, Yan X, Liu W, Ma L, Liu Y, Ma Q, Liu S. Co-Exposure of Ambient Particulate Matter and Airborne Transmission Pathogens: The Impairment of the Upper Respiratory Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15892-15901. [PMID: 36240448 PMCID: PMC9670849 DOI: 10.1021/acs.est.2c03856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Recent evidence has pinpointed the positive relevance between air particulate matter (PM) pollution and epidemic spread. However, there are still significant knowledge gaps in understanding the transmission and infection of pathogens loaded on PMs, for example, the interactions between pathogens and pre-existing atmospheric PM and the health effects of co-exposure on the inhalation systems. Here, we unraveled the interactions between fine particulate matter (FPM) and Pseudomonas aeruginosa (P. aeruginosa) and evaluated the infection and detrimental effects of co-exposure on the upper respiratory systems in both in vitro and in vivo models. We uncovered the higher accessibility and invasive ability of pathogens to epithelial cells after loading on FPMs, compared with the single exposure. Furthermore, we designed a novel laboratory exposure model to simulate a real co-exposure scenario. Intriguingly, the co-exposure induced more serious functional damage and longer inflammatory reactions to the upper respiratory tract, including the nasal cavity and trachea. Collectively, our results provide a new point of view on the transmission and infection of pathogens loaded on FPMs and uncover the in vivo systematic impairments of the inhalation tract under co-exposure through a novel laboratory exposure model. Hence, this study sheds light on further investigations of the detrimental effects of air pollution and epidemic spread.
Collapse
Affiliation(s)
- Yu Qi
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yucai Chen
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Yan
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ma
- Aerosol
and Haze Laboratory, Advanced Innovation Center for Soft Matter Science
and Engineering, Beijing University of Chemical
Technology, Beijing 100029, China
| | - Yongchun Liu
- Aerosol
and Haze Laboratory, Advanced Innovation Center for Soft Matter Science
and Engineering, Beijing University of Chemical
Technology, Beijing 100029, China
| | - Qingxin Ma
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijin Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Urban Aerobiome and Effects on Human Health: A Systematic Review and Missing Evidence. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Urban air pollutants are a major public health concern and include biological matters which composes about 25% of the atmospheric aerosol particles. Airborne microorganisms were traditionally characterized by culture-based methods recognizing just 1.5–15.3% of the total bacterial diversity that was evaluable by genome signature in the air environment (aerobiome). Despite the large number of exposed people, urban aerobiomes are still weakly described even if recently advanced literature has been published. This paper aims to systematically review the state of knowledge on the urban aerobiome and human health effects. A total of 24 papers that used next generation sequencing (NGS) techniques for characterization and comprised a seasonal analysis have been included. A core of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroides and various factors that influenced the community structure were detected. Heterogenic methods and results were reported, for both sampling and aerobiome diversity analysis, highlighting the necessity of in-depth and homogenized assessment thus reducing the risk of bias. The aerobiome can include threats for human health, such as pathogens and resistome spreading; however, its diversity seems to be protective for human health and reduced by high levels of air pollution. Evidence of the urban aerobiome effects on human health need to be filled up quickly for urban public health purposes.
Collapse
|
9
|
Jiang S, Sun B, Zhu R, Che C, Ma D, Wang R, Dai H. Airborne microbial community structure and potential pathogen identification across the PM size fractions and seasons in the urban atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154665. [PMID: 35314242 DOI: 10.1016/j.scitotenv.2022.154665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
As a vital component of airborne bioaerosols, bacteria and fungi seriously endanger human health as pathogens and allergens. However, comprehensive effects of environmental variables on airborne microbial community structures remain poorly understood across the PM sizes and seasons. We collected atmospheric PM1.0, PM2.5, and PM10 samples in Hefei, a typical rapidly-developing city in East China, across three seasons, and performed a comprehensive analysis of airborne microbial community structures using qPCR and high-throughput sequencing. Overall the bacterial and fungal abundances in PM1.0 were one to two orders of magnitude higher than those in PM2.5 and PM10 across seasons, but their α-diversity tended to increase from PM1.0 to PM10. The bacterial gene abundances showed a strong positive correlation (P < 0.05) with atmospheric SO2 and NO2 concentrations and air quality index. The bacterial gene abundances were significantly higher (P = 0.001) than fungi, and the bacterial diversity showed stronger seasonality. The PM sizes influenced distribution patterns for airborne microbial communities within the same season. Source-tracking analysis indicated that soils, plants, human and animal feces represented important sources of airborne bacteria with a total relative abundance of more than 60% in summer, but total abundance from the unidentified sources surpassed in fall and winter. Total 10 potential bacterial and 12 potential fungal pathogens were identified at the species level with the highest relative abundances in summer, and their abundances increased with the PM sizes. Together, our results indicated that a complex set of environmental factors, including water-soluble ions in PM, changes in air pollutant levels and meteorological conditions, and shifts in the relative importance of available microbial sources, acted to control the seasonal compositions of microbial communities in the urban atmosphere.
Collapse
Affiliation(s)
- Shaoyi Jiang
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Bowen Sun
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renbin Zhu
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Chenshuai Che
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Dawei Ma
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Runfang Wang
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Haitao Dai
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Zhang Y, Chen H, Du R, Zhang S, Zhao H. Microbial Activity and Community Structure in PM 2 .5 at Different Heights in Ground Boundary Layer of Beijing Atmosphere under Various Air Quality Levels. Environ Microbiol 2022; 24:4013-4029. [PMID: 35466499 DOI: 10.1111/1462-2920.16023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
The outbreak of the COVID-19 epidemic is a reminder that aerosols have important health effects as a potential route for disease transmission. Biological components in aerosols (especially PM2.5 ) may pose potential threats to humans as pathogens and allergens. Research on PM2.5 and biological components currently focuses mainly on polluted conditions, with less emphasis on clean environments. Sampling has also been primarily based on a single point with a lack of data at different positions. In this study, a modified fluorescein diacetate hydrolysis method was used to measure microbial activity in PM2.5 at different altitudes over a year in Beijing, China. A high-throughput sequencing method was used to study the microbial community. Results showed that microbial activity 1.5 m (0.0465 ng m-3 ) above the ground was higher than 31.5 m (0.0348 ng m-3 ). There was higher microbial activity at both heights during spring. Furthermore, a positive correlation was observed between microbial activity and relative abundance of dominant species. Microbial activity increased during autumn and winter increased alongside the pollution level, but in spring higher levels of microbial activity were observed in excellent or good weather conditions. The results from this study are valuable for further research regarding the biological components of atmospheric PM, the prevention of biological pollution, and establishing a comprehensive air quality evaluation system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yongtao Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanlin Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sujian Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|