1
|
Lee J, Jung H, Jun BM, Yoon Y, Choi JS, Rho H. Comprehensive evaluation of sodium dichloroisocyanurate (NaDCC) tablets as a novel solid-state alternative to conventional membrane cleaning agents in gravity-driven filtration systems. CHEMOSPHERE 2025; 370:144034. [PMID: 39733947 DOI: 10.1016/j.chemosphere.2024.144034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Gravity-driven membrane (GDM) systems are increasingly recognized as sustainable and energy-efficient solutions for decentralized water treatment. However, membrane fouling, particularly by organic matter, remains a significant operational challenge, necessitating regular chemical cleaning to maintain performance. The present study was undertaken to investigate the cleaning efficiency of sodium dichloroisocyanurate (NaDCC) tablets, a novel solid-state alternative to conventional liquid cleaning agents such as sodium hypochlorite (NaOCl), sodium lauryl sulfate (SLS), acetic acid, and citric acid. NaDCC tablets, originally developed for drinking water disinfection, offer advantages in terms of transport, storage, and safety compared with conventional liquid formulations. A comparative evaluation of cleaning agents was conducted on hollow fiber membranes used in GDM systems, with the concentration and contact times optimized for each chemical. NaOCl demonstrated the highest permeability recovery, reaching 48.29% at 500 mg L-1 after 12 h, followed closely by NaDCC, with a recovery of 46.55% under similar conditions. Conversely, SLS, acetic acid, and citric acid presented significantly lower recovery rates, with maximum flux restorations of 14.57%, 14.90%, and 16.73%, respectively. These results highlight the comparable performance of NaDCC and NaOCl in addressing organic fouling while offering practical advantages such as greater stability and reduced chemical handling risks. This study highlights the efficacy of NaDCC as a viable detergent for GDM systems, and also provides a comprehensive comparative analysis of the water permeability performances of commercial detergents such as NaOCl, which cause various ecotoxicities, and suggests the feasibility of NaDCC as a chemical detergent in practical membrane processes. Our findings contribute to the development of more sustainable and cost-effective membrane-cleaning protocols that enhance long-term operational efficiency and minimize environmental impacts.
Collapse
Affiliation(s)
- Jonghun Lee
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi, 10223, Republic of Korea
| | - Hyejin Jung
- Department of Environmental Engineering, Yonsei University, Yonseidae-gil 1, Wonju, Gangwon, 26493, Republic of Korea
| | - Byung-Moon Jun
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - June-Seok Choi
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| | - Hojung Rho
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Song W, Ma R, Liang Z, Li J, Dong J, Du X, Wang Z, Li X. Biofilm growth characteristic and footprint identification in gravity-driven ceramic membrane bioreactor with electro-coagulation under extreme conditions for roofing rainwater purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121944. [PMID: 39067337 DOI: 10.1016/j.jenvman.2024.121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The identification of biofilm growth footprints influencing on the biofilm detachment and breakup can advance research into how biofilms form. Thus, a gravity-driven ceramic membrane bioreactor (GDCMBR) was used to investigate the growth, detachment and breakup of biofilm using rainwater pretreated by electrocoagulation under 70-days continuous operation. The in-situ ultrasonic time-domain reflectometry (UTDR) technique was applied to non-invasively determine the biofilm thickness. Initially, the biofilm was slowly thickening, but it would collapse and became thinner after accumulating to a certain level, and then it thickened again in a later period, following a cyclic pattern of 'thickening - collapsing - thickening'. This is because the biofilm growth is related with the accumulation of flocs, however, excessive floc formation results in the biofilm being overweight till reaching the thickness limit and thus collapsing. Subsequently, the biofilm gradually thickens again due to the floc production and continuous deposition. Although the biofilm was dynamically changing, the water quality of treatment of the biofilm always remained stable. Ammonia nitrogen and total phosphorus have been almost completely removed, while CODMn removal efficiency was around 25%. And total bacteria amount in the membrane concentrate was obviously higher than that in the influent with the greater microbial activity, demonstrating the remarkable enrichment effect on bacteria. The understanding of biofilm growth characteristic and footprint identification enables us to develop rational approaches to control biofilm structure for efficient GDCMBR performance and operation lifespan.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Rong Ma
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhenhao Liang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jiawan Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jiahao Dong
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xianhui Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China.
| |
Collapse
|
3
|
Alnumani A, Abutaleb A, Park B, Mubashir M. Recent advancement on water filtration membranes: Navigating biofouling challenges. ENVIRONMENTAL RESEARCH 2024; 251:118615. [PMID: 38437904 DOI: 10.1016/j.envres.2024.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
This study investigates the field of antifouling membranes for water filtration and desalination applications, specifically focusing on two-dimensional materials. The study examines the importance of these membranes in the context of climate change and its effects on coastal ecosystems. The occurrence of biofouling in seawater desalination membranes is closely connected to intricate processes influenced by factors such as water quality, microbial communities, hydrodynamics, and membrane properties. Microorganism adhesion initiates the process, which then advances into irreversible attachment and the creation of biofilm. Detached pieces contribute to the perpetuation of fouling. Biofouling is caused by a variety of biomaterials and organics, including bacteria, extracellular polymeric substances (EPS), proteins, and humic compounds. Innovative methods such as surface alterations using two-dimensional materials like graphene and graphene oxide, as well as the use of biofouling-resistant materials, provide promising possibilities. These materials have antifouling characteristics, making them environmentally beneficial options that reduce the need for chemical cleaning. Their application improves the water treatment process by preventing fouling and enhancing membrane performance. Real-world research applications can enhance and optimize these tactics to effectively reduce biofouling in seawater desalination systems, hence improving efficiency and sustainability. This is particularly important in light of climate change and its impact on coastal ecosystems. The findings obtained from the literature review emphasise the utmost significance of tackling biofouling in the face of a changing environment, particularly with regard to microorganisms. Important factors to consider are the selection of coating materials, the implementation of environmentally friendly cleaning solutions made from natural chemicals, and the improvement of pretreatment systems. Green cleaning agents are important eco-friendly alternatives to typical biocides, as they possess antibacterial, antifungal, and antifouling capabilities. Given the existence of climate change, these observations serve as a basis for promoting environmentally friendly methods in water treatment technology.
Collapse
Affiliation(s)
- Ammar Alnumani
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia.
| | - Abdulrahman Abutaleb
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia.
| | - Byungsung Park
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia
| | - Muhammad Mubashir
- Water Technologies Innovation Institute & Research Advancement, Saline Water Conversion Corporation, WTIIRA-SWCC, Jubail, 35417, Saudi Arabia
| |
Collapse
|
4
|
Hube S, Veronelli S, Li T, Burkhardt M, Brynjólfsson S, Wu B. Microplastics affect membrane biofouling and microbial communities during gravity-driven membrane filtration of primary wastewater. CHEMOSPHERE 2024; 353:141650. [PMID: 38462183 DOI: 10.1016/j.chemosphere.2024.141650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Recently, gravity-driven membrane (GDM) filtration has been adopted as an alternative solution for decentralized wastewater treatment due to easy installation and maintenance, reduced energy and operation cost, and low global warming impact. This study investigated the influence of microplastic size (0.5-0.8 μm and 40-48 μm) and amount (0.1 and 0.2 g/L) on the membrane performance and microbial community in GDM systems for primary municipal wastewater treatment. The results showed that dosing microplastics in the GDM systems led to 9-54% lower permeate flux than that in the control. This was attributed to more cake formation (up to 6.4-fold) with more deposition of extracellular polymeric substances (EPS, up to 1.5-fold) and divalent cations (up to 2.1-fold) in the presence of microplastics, especially with increasing microplastic amount or size. However, the dosed microplastics promoted formation of heterogeneous cake layers with more porous nature, possibly because microplastics created void space in the cake and also tended to bind with divalent cations to reduce EPS-divalent cations interactions. In the biofilm of the GDM systems, the presence of microplastics could lower the number of total species, but it greatly enhanced the abundance of certain dominant prokaryotes (Phenylobacterium haematophilum, Planctomycetota bacterium, and Flavobacteriales bacterium), eukaryotes (Stylonychia lemnae, Halteria grandinella, and Paramicrosporidium saccamoebae), and virus (phylum Nucleocytoviricota), as well as amino acid and lipid metabolic functions. Especially, the small-size microplastics at a higher dosed amount led to more variations of microbial community structure and microbial metabolic functions.
Collapse
Affiliation(s)
- Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Stefanie Veronelli
- Institute of Environmental and Process Engineering (UMTEC), Eastern Switzerland University of Applied Sciences, Oberseestrasse 10, 8640, Rapperswil, Switzerland
| | - Tian Li
- College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| | - Michael Burkhardt
- Institute of Environmental and Process Engineering (UMTEC), Eastern Switzerland University of Applied Sciences, Oberseestrasse 10, 8640, Rapperswil, Switzerland
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107, Reykjavik, Iceland.
| |
Collapse
|
5
|
Wu X, Li Y, Su Z, Tian L, Siddique MS, Yu W. Less pressure contributes to gravity-driven membrane ultrafiltration with greater performance: Enhanced driving efficiency and reduced disinfection by-products formation potential. J Environ Sci (China) 2024; 137:407-419. [PMID: 37980026 DOI: 10.1016/j.jes.2023.02.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 11/20/2023]
Abstract
Gravity-driven membrane (GDM) systems have been well developed previously; however, impacts of driving (i.e., transmembrane) pressure on their performance received little attention, which may influence GDM performance. In this study, we evaluated 4 GDM systems via altering the transmembrane pressure from 50 mbar to 150 mbar with 2 groups, treating surface water in Beijing, China. Results showed that less driving pressure was more favorable. Specifically, compared to groups (150 mbar), groups under a pressure of 50 mbar were found to have greater normalized permeability and lower total resistance. During the whole operation period, the quality of effluents was gradually improved. For example, the removal efficiency of UV254 was significantly improved; particularly, under low driving pressure, the removal efficiency of UV254 in PES GDM system increased by 11.91%, as compared to the corresponding system under high driving pressure. This observation was consistent with the reduction on disinfection by-products (DBPs) formation potential; groups under 50 mbar achieved better DBPs potential control, indicating the advantages of lower driving pressure. Biofilms were analyzed and responsible for these differences, and distinct distributions of bacteria communities of two GDM systems under 50 and 150 mbar may be responsible for various humic-like substances removal efficiency. Overall, GDM systems under less pressure should be considered and expected to provide suggestions on the design of GDM systems in real applications.
Collapse
Affiliation(s)
- Xiaoting Wu
- Colleges of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yufei Li
- Colleges of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Long Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
6
|
Influence of powdered activated carbon on gravity-driven ultrafiltration for decentralized drinking water treatment: Insights from microbial community and biofilm structure. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
7
|
Feng J, Li X, Yang Y, Fan X, Zhou Z, Ren J, Tan X, Li H. Insight into biofouling mechanism in biofiltration-facilitated gravity-driven membrane (GDM) system: Beneficial effects of pre-deposited adsorbents. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Bilad MR, Junaeda SR, Khery Y, Nufida BA, Shamsuddin N, Usman A, Violet V. Compaction of a Polymeric Membrane in Ultra-Low-Pressure Water Filtration. Polymers (Basel) 2022; 14:polym14163254. [PMID: 36015511 PMCID: PMC9416213 DOI: 10.3390/polym14163254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Applications of ultra-low-pressure filtration systems are increasing as they offer enhanced sustainability due to lower energy input, almost no use of chemicals, and minimum operational expenditure. In many cases, they operate as a decentralized system using a gravity-driven membrane (GDM) filtration process. These applications are relatively new; hence, the fundamental knowledge of the process is still limited. In this study, we investigated the phenomenon of polymeric membrane compaction under an ultra-low-pressure system. The compaction phenomenon is well-recognized in the traditional pressure-driven system operating at high transmembrane pressures (ΔPs > 200 kPa), but it is less documented in ultra-low-pressure systems (ΔP < 10 kPa). A simple GDM filtration setup operated under a constant-pressure system was employed to investigate the compaction phenomena in a polymeric hollow fiber membrane for clean water filtration. Firstly, a short-term pressure stepping test was performed to investigate the occurrence of instantaneous compaction in the ΔP range of 1−10 kPa. The slow compaction was later investigated. Finally, the compaction dynamic was assessed under alternating high and low ΔP and relaxation in between the filtrations. The findings demonstrated the prominence of membrane compaction, as shown by the decreasing trend in clean water permeability at higher ΔPs (i.e., 3240 and 2401 L m−2 h−1 bar−1 at ΔPs of 1 and 10 kPa, respectively). We also found that the intrinsic permeability of the applied polymeric membrane was significantly higher than the apparent one (4351 vs. 2401 L m−2 h−1 bar−1), demonstrating >50% loss due to compaction. The compaction was mainly instantaneous, which occurred when the ΔP was changed, whereas only minor changes in permeability occurred over time when operating at a constant ΔP. The compaction was highly reversible and could be restored (i.e., decompaction) through relaxation by temporarily stopping the filtration. A small fraction of irreversible compaction could be detected by operating alternating filtrations under ΔPs of 1 and 10 kPa. The overall findings are essential to support emerging GDM filtration applications, in which membrane compaction has been ignored and confounded with membrane fouling. The role of compaction is more prominent for high-flux GDM filtration systems treating less-fouling-prone feed (i.e., rainwater, river water) and involving membrane cleaning (i.e., relaxation) in which both reversible and irreversible compaction occurred simultaneously.
Collapse
Affiliation(s)
- Muhammad Roil Bilad
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Correspondence:
| | - Siti Rahma Junaeda
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Yusran Khery
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Baiq Asma Nufida
- Faculty of Applied Science and Education, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei
| | - Violet Violet
- Faculty of Forestry, Lambung Mangkurat University, Jl. A. Yani KM. 36, Banjarbaru 70714, Indonesia
| |
Collapse
|
9
|
Du P, Li X, Yang Y, Zhou Z, Fan X, Chang H, Liang H. Regulated-biofilms enhance the permeate flux and quality of gravity-driven membrane (GDM) by in situ coagulation combined with activated alumina filtration. WATER RESEARCH 2022; 209:117947. [PMID: 34910991 DOI: 10.1016/j.watres.2021.117947] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
It is a critical challenge for drinking water production when treating algae-contaminated surface water. In this study, the impact of in situ coagulation (C), activated alumina filtration (AA) and their combination (CAA) on the performance of gravity-driven membrane (GDM) was systematically assessed during 105-day operation. The results indicated that pretreatments in particular CAA could effectively enhance GDM flux, and the stable fluxes were increased to 3.1, 4.9 and 8.3 L/(m2·h) (LMH) for CGDM, AA/GDM and CAA/GDM, respectively when compared to the control GDM (2.0 LMH). Coagulation was beneficial to formation of thick but loose biofouling layer, while AA filtration was effective to retain foulants including extracellular polymeric substances (EPS), organics, total nitrogen and total phosphorus. The CAA/GDM could mostly remove these foulants, and facilitate the proliferation of bacterial genera that could consume EPS, further alleviating membrane fouling. The difference in loosely bound EPS and tightly bound EPS of biofouling layer attributed to the difference of reversible fouling and irreversible fouling, respectively. Morphological observations, variation in functional groups or elements further confirmed the difference in biological layers in different GDM systems. The occurrence of specific bacterial genera involving the potential to degrade protein, chitin and other high molecular weight organics was responsible for contaminant removals.
Collapse
Affiliation(s)
- Peng Du
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China; China Academy of Building Research, Institute of Building Fire Research, Beijing 100013, China
| | - Xing Li
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Yanling Yang
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Zhou
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoyan Fan
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|