1
|
Lopes T, Costa P, Cardoso P, e Silva JA, Figueira E. Inducing Drought Resilience in Maize Through Encapsulated Bacteria: Physiological and Biochemical Adaptations. PLANTS (BASEL, SWITZERLAND) 2025; 14:812. [PMID: 40094834 PMCID: PMC11902389 DOI: 10.3390/plants14050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
Droughts are projected to become prevalent throughout the 21st century, endangering agricultural productivity and global food security. To address these challenges, novel strategies to enhance water management and augment plant resilience are imperative. Bacterial encapsulation has emerged as a promising approach, offering benefits such as enhanced bacterial survival, soil compatibility, and sustainable plant growth. This study evaluated the osmotolerance of bacteria from arid environments and determined their plant growth-promoting ability in drought conditions. The encapsulation of these bacteria in bio-compatible capsules led to a substantial enhancement in the performance of maize plants under drought stress. Maize plants treated with encapsulated bacteria demonstrated a 35% increase in root biomass and a 28% enhancement in shoot growth compared to untreated controls. Furthermore, significant physiological and biochemical adaptations were observed, including a 45% increase in photosynthetic pigment concentration and higher osmolyte levels, which contributed to improved drought stress tolerance. The findings of this study demonstrate the potential of encapsulated bacteria to enhance maize resilience to drought, thereby supporting robust growth under water-limited conditions. This approach presents a sustainable strategy to improve drought tolerance, and it may reduce irrigation dependency and maintain crop yields in the face of increasing climate uncertainty.
Collapse
Affiliation(s)
- Tiago Lopes
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (T.L.); (P.C.); (P.C.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Costa
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (T.L.); (P.C.); (P.C.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (T.L.); (P.C.); (P.C.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Etelvina Figueira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (T.L.); (P.C.); (P.C.)
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Liu Q, Li S, Li Y, Yu L, Zhao Y, Wu Z, Fan Y, Li X, Wang Y, Zhang X, Zhang Y. Identification of urinary volatile organic compounds as a potential non-invasive biomarker for esophageal cancer. Sci Rep 2023; 13:18587. [PMID: 37903959 PMCID: PMC10616168 DOI: 10.1038/s41598-023-45989-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023] Open
Abstract
Early diagnosis of esophageal cancer (EC) is extremely challenging. The study presented herein aimed to assess whether urinary volatile organic compounds (VOCs) may be emerging diagnostic biomarkers for EC. Urine samples were collected from EC patients and healthy controls (HCs). Gas chromatography-ion mobility spectrometry (GC-IMS) was next utilised for volatile organic compound detection and predictive models were constructed using machine learning algorithms. ROC curve analysis indicated that an 8-VOCs based machine learning model could aid the diagnosis of EC, with the Random Forests having a maximum AUC of 0.874 and sensitivities and specificities of 84.2% and 90.6%, respectively. Urine VOC analysis aids in the diagnosis of EC.
Collapse
Affiliation(s)
- Qi Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shuhai Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yaping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuxiao Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zhihong Wu
- Department of Traditional Chinese Medicine, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yingjing Fan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xinyang Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yifeng Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Sá C, Matos D, Cardoso P, Figueira E. Do Volatiles Affect Bacteria and Plants in the Same Way? Growth and Biochemical Response of Non-Stressed and Cd-Stressed Arabidopsis thaliana and Rhizobium E20-8. Antioxidants (Basel) 2022; 11:2303. [PMID: 36421489 PMCID: PMC9687498 DOI: 10.3390/antiox11112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
Plant roots are colonized by rhizobacteria, and these soil microorganisms can not only stimulate plant growth but also increase tolerance to stress through the production of volatile organic compounds. However, little is known about the effect that these plant beneficial volatiles may have on bacteria. In this study, the effects on growth and oxidative status of different concentrations of three volatiles already reported to have a positive influence on plant growth (2-butanone, 3-methyl-1-butanol, and 2,3-butanediol) were determined in A. thaliana and Rhizobium sp. strain E20-8 via airborne exposure in the presence and absence of Cd. It was expected to ascertain if the plant and the bacterium are influenced in the same way by the volatiles, and if exposure to stress (Cd) shifts the effects of volatiles on plants and bacteria. Results showed the antioxidant activity of the volatiles protecting the plant cell metabolism from Cd toxicity and increasing plant tolerance to Cd. Effects on bacteria were less positive. The two alcohols (3-methyl-1-butanol and 2,3-butanediol) increased Cd toxicity, and the ketone (2-butanone) was able to protect Rhizobium from Cd stress, constituting an alternative way to protect soil bacterial communities from stress. The application of 2-butanone thus emerges as an alternative way to increase crop production and crop resilience to stress in a more sustainable way, either directly or through the enhancement of PGPR activity.
Collapse
Affiliation(s)
- Carina Sá
- Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Matos
- Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Cruz C, Cardoso P, Santos J, Matos D, Figueira E. Bioprospecting Soil Bacteria from Arid Zones to Increase Plant Tolerance to Drought: Growth and Biochemical Status of Maize Inoculated with Plant Growth-Promoting Bacteria Isolated from Sal Island, Cape Verde. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212912. [PMID: 36365367 PMCID: PMC9656834 DOI: 10.3390/plants11212912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 05/14/2023]
Abstract
Climate change and anthropogenic activities are responsible for extensive crop yield losses, with negative impact on global agricultural production. The occurrence of extreme weather events such as drought is a big challenge for agriculture, negatively impacting crops. Thus, methodologies reducing crop dependence on water will be a great advantage. Plant roots are colonized by soil bacteria, that can establish beneficial associations with plants, increasing crop productivity and plant tolerance to abiotic stresses. The aim of this study was to promote plant growth and to increase crop tolerance to drought by inoculation with osmotolerant bacterial strains. For that, bacteria were isolated from plants growing in Sal Island (Cape Verde) and identified. The osmotolerance and plant-growth promotion (PGP) abilities of the strains were determined. A maize seed cultivar tolerant to drought was inoculated with the strains evidencing best PGP capacity and osmo-tolerance. Results evidenced the ability of some bacterial strains increasing the development and inducing osmotolerance in plants. These results evidence the potential of osmotolerant bacteria to further increase the level of tolerance of maize varieties tolerant to drought, decreasing the dependence of this crop on irrigation, and open new perspectives to growth maize in drought affected areas and to use water more efficiently.
Collapse
Affiliation(s)
- Catarina Cruz
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Centre for Environmental and Marine Studies, Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jacinta Santos
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Matos
- Centre for Environmental and Marine Studies, Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies, Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
5
|
Li J, Yang R, Hu D, Xu Y, Ma Z. Efficient bacterial inactivation with S-doped g-C 3N 4 nanosheets under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34637-34650. [PMID: 35040064 DOI: 10.1007/s11356-021-18092-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The pathogenic bacteria in water that threatens the human health and photocatalytic disinfection have been proven to be a cost-effective and promising green technology. It is significant and necessary to develop efficient, safe, and visible light-driven photocatalysts. In this study, Escherichia coli was used as model bacterium and the disinfection performance of prepared S-doped g-C3N4 nanosheets (S-CNNs) under visible light was investigated. The results showed that the synergistic effects of S doping and the unique 2D structure of S-CNNs enhanced the visible light absorption, enlarged the specific surface area and reduced the recombination of photogenerated charge carriers which is beneficial for promoting the photocatalytic disinfection of the E. coli. Scavenger experiments indicated •O2- and h+ were the predominant reactive species in the photocatalytic disinfection process. In addition, the kinetics of disinfection activity were fitted by the modified Hom model and the k2 value of S-CNNs is 0.0219 min-1, which is much higher than that of the bulk g-C3N4 (CN). This work has demonstrated efficient bacterial inactivation with S-CNNs under visible light irradiation.
Collapse
Affiliation(s)
- Juan Li
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R, China
| | - Ruixian Yang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R, China
| | - DanDan Hu
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R, China
| | - Yanchong Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R, China
| | - Zhanqiang Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, P. R, China.
| |
Collapse
|