1
|
Sartirana D, Zanotti C, Palazzi A, Pietrini I, Frattini P, Franzetti A, Bonomi T, Rotiroti M. Assessing data variability in groundwater quality monitoring of contaminated sites through factor analysis and multiple linear regression models. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104471. [PMID: 39631170 DOI: 10.1016/j.jconhyd.2024.104471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Monitoring of long-term contaminant concentrations trends is essential to verify that attenuation processes are effectively occurring at a site. However, monitoring data are often affected by extreme variability which prevents the identification of clear concentration trends. The variability is higher in long-screened monitoring wells, which are currently used at many contaminated sites, although it has been known since the 1980s that monitoring data from long-screened wells can be biased. Understanding the factors that may influence the variability of monitoring data is pivotal. To this end, following hydrochemical conceptual modelling using a multi-method approach, the variability of hydrocarbon concentrations from fully screened monitoring wells was assessed over eleven years at a former oil refinery located in Northern Italy. The proposed methodology combined factor analysis with multiple linear regression models. Results pointed out a higher variability in hydrocarbon concentrations at the plume fringe and a lower variability at the plume source and core. 44-46 % of the total variability in measured hydrocarbon concentrations is due to "intrinsic plume heterogeneity", related to the three-dimensional structure of a contaminant plume, which becomes thinner at the edge, creating a vertical heterogeneity of redox conditions at the plume fringe. This variability, expressed as increasing concentrations of sulfate and decreasing concentrations of methane, represents a background variability that cannot be reduced by improving sampling procedures. The remaining 56-54 % of the total variability may be due to the non-standardization of some purging and sampling operations, such as pump intake position, purging and sampling time/flow rates and variations in the analytical methods. This finding suggests that monitoring improvements in fully screened wells by standardizing all purging/sampling operations or using sampling techniques that can reduce the actual screen length (e.g., packers or separation/dual pumping techniques) would reduce data variability by more than half.
Collapse
Affiliation(s)
- Davide Sartirana
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy.
| | - Chiara Zanotti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy
| | - Alice Palazzi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy
| | - Ilaria Pietrini
- Environmental and Biological Laboratories, Eni S.p.A., San Donato Milanese, Italy
| | - Paola Frattini
- Hydrogeology and Groundwater Modelling, Eni Rewind S.p.A., San Donato Milanese, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy
| | - Tullia Bonomi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy
| | - Marco Rotiroti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy
| |
Collapse
|
2
|
Chen Z, He J, He B, Chu Y, Xia Q. A new approach combining principal component factor analysis and K-means for identifying natural background levels of NO 3-N in shallow groundwater of the Huaihe River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177120. [PMID: 39490819 DOI: 10.1016/j.scitotenv.2024.177120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Establishing natural background levels (NBLs) of nitrate‑nitrogen (NO3-N) is crucial for groundwater resource management and pollution prevention. Traditional statistical methods for evaluating NO3-N NBLs generally overlook the hydrogeochemical processes associated with NO3-N pollution. We propose using a method that combines principal component factor analysis and K-means clustering (PCFA-KM) to identify NO3-N anomalies in three typical areas of the Huaihe River Basin and evaluate the effectiveness of this method in comparison with the hydrochemical graphic method (Hydro) and the Gaussian mixture model (GMM). The results showed that PCFA-KM was the most robust and effective for identifying NO3-N anomalies caused by human activities. This method not only considers the data's discreteness but also combines the influencing factors of NO3-N pollution to identify anomalies, thus avoiding the influence of non-homogeneous hydrogeological conditions. Moreover, 70 % of the identified anomalies were explained by sampling survey data, geochemical ratios, and pollution percentage indices, confirming the method's effectiveness and reliability. The upper limits of NO3-N NBLs obtained by PCFA-KM were 12.97 mg/L (CUs-I), 4.42 mg/L (CUs-V), and 5.57 mg/L (CUs-VI). This study provides a new approach for NO3-N anomaly identification, which can guide future NO3-N NBLs assessments and pollution prevention and control efforts.
Collapse
Affiliation(s)
- Zhen Chen
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jiangtao He
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Baonan He
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Yanjia Chu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Qiwen Xia
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
3
|
Yao R, Zhang Y, Yan Y, Wu X, Uddin MG, Wei D, Huang X, Tang L. Natural background level, source apportionment and health risk assessment of potentially toxic elements in multi-layer aquifers of arid area in Northwest China. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135663. [PMID: 39217931 DOI: 10.1016/j.jhazmat.2024.135663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Groundwater contaminated by potentially toxic elements has become an increasing global concern for human health. Therefore, it is crucial to identify the sources and health risks of potentially toxic elements, especially in arid areas. Despite the necessity, there is a notable research gap concerning the sources and risks of these elements within multi-layer aquifers in such regions. To address this gap, 54 phreatic and 24 confined groundwater samples were collected from an arid area in Northwest China. This study aimed to trace the sources and evaluate the human health risks of potentially toxic elements by natural background level (NBL), positive matrix factorization (PMF) model, and health risk model. Findings revealed exceeding levels of potentially toxic elements existed in phreatic and confined aquifers. Source apportionment and NBL results indicated that mineral dissolution, evaporation, redox reactions, and human activities were the main factors for elevated concentrations of potentially toxic elements. High Fe and Mn concentrations were attributed to reduction environments, while F accumulation resulted from slow runoff, and irrigation from the Yellow River. Due to high F levels, more than one-third of groundwater samples (phreatic: 33.14 %, confined: 56.22 %) posed non-carcinogenic health risks to population groups. Adults displayed higher carcinogenic risks (phreatic: 19.47 %, confined: 34.16 %) than infants (phreatic: 0 %, confined: 0 %) and children (phreatic: 1.26 %, confined: 7.97 %) owing to the toxic elements of Cr. The confined aquifer presented greater health risks than the phreatic aquifer. Consequently, controlling the levels of F and Cr in multi-layered aquifers is key to reducing health risks. These findings provide valuable insights into protecting groundwater from contamination by potentially toxic elements in multi-layered aquifers worldwide.
Collapse
Affiliation(s)
- Rongwen Yao
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Yunhui Zhang
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China.
| | - Yuting Yan
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Xiangchuan Wu
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Md Galal Uddin
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, National University of Ireland Galway, Ireland
| | - Denghui Wei
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Xun Huang
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China
| | - Lijun Tang
- Ningxia Survey and Monitoring Institute of Land and Resources, Yinchuan 750000, China
| |
Collapse
|
4
|
Amorosi A, Sammartino I. Predicting natural arsenic enrichment in peat-bearing, alluvial and coastal depositional systems: A generalized model based on sequence stratigraphy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171571. [PMID: 38492587 DOI: 10.1016/j.scitotenv.2024.171571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Hazardously high concentrations of arsenic exceeding the threshold limits for soils and drinking waters have been widely reported from Quaternary sedimentary successions and shallow aquifers of alluvial and coastal lowlands worldwide, raising public health concerns due to potential human exposure to arsenic. A combined sedimentological and geochemical analysis of subsurface deposits, 2.5-50 m deep, from the SE Po Plain (Italy) documents a systematic tendency for naturally-occurring arsenic to accumulate in peat-rich layers, with concentrations invariably greater than maximum permissible levels. A total of 366 bulk sediment samples from 40 cores that penetrated peat-bearing deposits were analysed by X-ray fluorescence. Arsenic concentrations associated with 7 peat-free lithofacies associations (fluvial-channel, levee/crevasse, floodplain, swamp, lagoon/bay, beach-barrier, and offshore/prodelta) exhibit background values invariably below threshold levels (<20 mg/kg). In contrast, total arsenic contents from peaty clay and peat showed 2-6 times larger As accumulation. A total of 204 near-surface (0-2.5 m) samples from modern alluvial and coastal depositional environments exhibit the same trends as their deeper counterparts, total arsenic peaking at peat horizons above the threshold values for contaminated soils. The arsenic-bearing, peat-rich Quaternary successions of the Po Plain accumulated under persisting reducing conditions in wetlands of backstepping estuarine and prograding deltaic depositional environments during the Early-Middle Holocene sea-level rise and subsequent stillstand. Contamination of the Holocene and underlying Pleistocene aquifer systems likely occurred through the release of As by microbially-mediated reductive dissolution. Using high-resolution sequence-stratigraphic concepts, we document that the Late Pleistocene-Holocene lithofacies architecture dictates the subsurface distribution of As. The "wetland trajectory", i.e. the path taken by the landward/seaward shift of peat-rich depositional environments during the Holocene, may help predict spatial patterns of natural As distribution, delineating the highest As-hazard zones and providing a realistic view of aquifer contamination even in unknown areas.
Collapse
Affiliation(s)
- Alessandro Amorosi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via Zamboni 67, 40126 Bologna, Italy.
| | - Irene Sammartino
- National Research Council (CNR), Institute of Marine Science (ISMAR), Via Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
5
|
Huang G, Song J, Han D, Liu R, Liu C, Hou Q. Assessing natural background levels of geogenic contaminants in groundwater of an urbanized delta through removal of groundwaters impacted by anthropogenic inputs: New insights into driving factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159527. [PMID: 36270365 DOI: 10.1016/j.scitotenv.2022.159527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Knowledge on driving forces controlling natural background levels (NBLs) of geogenic contaminants (GCs) in groundwater of coastal urbanized areas are still limited because of complex hydrogeological conditions and anthropogenic activities. This study assesses NBLs of two GCs including arsenic (As) and manganese (Mn) in four groundwater units of the Pearl River Delta (PRD) with large scale urbanization by using a preselection method composed of the chloride/bromide mass ratio versus chloride concentration and the oxidation capacity with the combination of Grubbs' test. More importantly, driving factors controlling NBLs of As/Mn in groundwater of the PRD are discussed. Results showed that groundwater As/Mn concentrations in residual datasets were independent of land-use types, while those in original datasets in different land-use types were distinct because of various human activities, indicating that the used preselection method in this study is valid for NBLs-As/Mn assessment in groundwater of the PRD. NBL-As in coastal-alluvial aquifers was >6 times that in other groundwater units. NBL-Mn in coastal-alluvial aquifers was 1.4 times that in alluvial-proluvial aquifers, and both were >4 times that in other two groundwater units. High NBLs-As/Mn in coastal-alluvial aquifers is mainly attributed to reduction of FeMn oxyhydr(oxides) induced by mineralization of organic matter in Quaternary sediments. Elevated pH also contributes higher NBL-As in coastal-alluvial aquifers. By contrast, higher NBL-Mn in alluvial-proluvial aquifers than in other two groundwater units mainly ascribes to reduction of FeMn oxyhydr(oxides) in Quaternary sediments triggered by irrigation of reducing river waters. In addition, more occurrence of As/Mn-rich sediments and the infiltration of As/Mn-rich river water are also important factors for high NBLs-As/Mn in coastal-alluvial aquifers. This study shows that revealing natural driving factors of GCs-rich groundwater in coastal urbanized areas on the basis of identification of contaminated groundwaters via the used preselection methods is acceptable.
Collapse
Affiliation(s)
- Guanxing Huang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China; Hebei Key Laboratory of Groundwater Remediation, Shijiazhuang, China.
| | - Jiangmin Song
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
| | - Dongya Han
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
| | - Ruinan Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
| | - Chunyan Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
| | - Qinxuan Hou
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China.
| |
Collapse
|
6
|
Zanchi M, Zapperi S, Zanotti C, Rotiroti M, Bonomi T, Gomarasca S, Bocchi S, La Porta CA. A pipeline for monitoring water pollution: The example of heavy metals in Lombardy waters. Heliyon 2022; 8:e12435. [PMID: 36582716 PMCID: PMC9793264 DOI: 10.1016/j.heliyon.2022.e12435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Time-dependent geolocalized analysis of pollution data allows to better understand their dynamics over time and could suggest strategies to restore a good ecological status of contaminated area. This research analyzes concentrations of pollutants in surface waters and groundwater monitored by the Regional Environment Protection Agency of Lombardy from 2017 to 2020. Lombardy is one of the richest and populous region of Europe, providing an interesting example of the impact of environmental pollutants due to anthropogenic and industrial activities, not only for Italy but also for all Europe. Results show that groundwater displays more sites with heavy metals above the legal limit with respect to surface waters, including As, Ni, Cr and Zn. Furthermore, the spatio-temporal analysis of the data clearly shows that the introduction of more restrictive laws is a proper policy to improve the ecological status of the water.
Collapse
Affiliation(s)
- Marco Zanchi
- Department of Environmental Science and Policy, University of Milan, via Celoria 10, 20133 Milano, Italy,Center for Complexity and Biosystems, University of Milan, Via Celoria 16, 20133 Milano, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, University of Milan, Via Celoria 16, 20133 Milano, Italy,Department of Physics, University of Milan, Via Celoria 16, 20133 Milano, Italy,CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Via R. Cozzi 53, 20125 Milano, Italy
| | - Chiara Zanotti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Marco Rotiroti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Tullia Bonomi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Stefano Gomarasca
- Department of Environmental Science and Policy, University of Milan, via Celoria 10, 20133 Milano, Italy
| | - Stefano Bocchi
- Department of Environmental Science and Policy, University of Milan, via Celoria 10, 20133 Milano, Italy
| | - Caterina A.M. La Porta
- Department of Environmental Science and Policy, University of Milan, via Celoria 10, 20133 Milano, Italy,Center for Complexity and Biosystems, University of Milan, Via Celoria 16, 20133 Milano, Italy,CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, via Celoria 10, 20133 Milano, Italy,Innovation For Well-Being And Environment (CRC-I-WE), University of Milan, Via Celoria 10, 20133 Milano, Italy,Corresponding author at: Department of environmental Science and Policy, University of Milan, Via Celoria 10, 20133 Milan, Italy.
| |
Collapse
|