1
|
Vergara PM, Carreño-Chovan C, Quiroz M, Alaniz AJ, Fierro A, Saavedra M, Hidalgo-Corrotea CM, Zúñiga AH, Carvajal MA, Borquez C, Moreira-Arce D. The internal decay of wood is driven by the interplay between foraging Magellanic woodpeckers and environmental conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177133. [PMID: 39447911 DOI: 10.1016/j.scitotenv.2024.177133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Although woodpeckers are known to forage in decaying trees, their contribution to internal wood decay is not well known. In this sense, non-destructive techniques for structural wood degradation provide an opportunity to quantitatively assess the role of woodpeckers in tree decay. We used sonic tomography to test that the trunks of living trees pecked by Magellanic woodpeckers show pronounced decay, which accelerates under environmental conditions favorable to wood-decaying fungi. The internal decomposition of wood and its decay rate were measured over four years on 156 living southern beech (Nothofagus) trees belonging to four dominant species of southern temperate forests in northern Patagonia. Half of these live trees had woodpecker feeding holes, while the rest served as controls. The percentage of decayed wood, although not severely decayed, increased in sections with the presence of woodpecker holes, but was also influenced by temperatures and biophysical variables such as elevation and topography. The trunk sections with woodpecker holes and exposed to intensive foraging showed accelerated inter-annual decay. Woodpecker foraging activity interacted with vegetation characteristics, resulting in accelerated wood decay in forest sites with an open canopy and exposed to water stress. Thus, sonic tomography provided evidence of a close relationship between woodpeckers and internal wood decomposition, suggesting a positive feedback mechanism regulated by forest disturbance. The approach used here can be extended to gain insight into the influence of woodpeckers on tree decay and mortality in regions experiencing severe drought and forest degradation, such as northern Patagonia.
Collapse
Affiliation(s)
- Pablo M Vergara
- Universidad de Santiago de Chile (USACH), Departamento de Gestión Agraria, Santiago, Chile.
| | - Carlos Carreño-Chovan
- Universidad de Santiago de Chile (USACH), Departamento de Gestión Agraria, Santiago, Chile
| | - Madelaine Quiroz
- Universidad de Santiago de Chile (USACH), Departamento de Gestión Agraria, Santiago, Chile
| | - Alberto J Alaniz
- Universidad de Santiago de Chile (USACH), Departamento de Gestión Agraria, Santiago, Chile
| | - Andrés Fierro
- Universidad de Santiago de Chile (USACH), Departamento de Gestión Agraria, Santiago, Chile
| | | | | | - Alfredo H Zúñiga
- Universidad de Santiago de Chile (USACH), Departamento de Gestión Agraria, Santiago, Chile
| | - Mario A Carvajal
- Universidad de Santiago de Chile (USACH), Departamento de Gestión Agraria, Santiago, Chile
| | - Cristian Borquez
- Universidad de Santiago de Chile (USACH), Departamento de Gestión Agraria, Santiago, Chile
| | - Darío Moreira-Arce
- Universidad de Santiago de Chile (USACH), Departamento de Gestión Agraria, Santiago, Chile
| |
Collapse
|
2
|
Hidalgo-Corrotea C, Alaniz AJ, Vergara PM, Moreira-Arce D, Carvajal MA, Pacheco-Cancino P, Espinosa A. High vulnerability of coastal wetlands in Chile at multiple scales derived from climate change, urbanization, and exotic forest plantations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166130. [PMID: 37579796 DOI: 10.1016/j.scitotenv.2023.166130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/16/2023]
Abstract
Coastal wetlands are considered one of the most vulnerable ecosystems worldwide; the ecosystem services they provide and the conservation of their biodiversity are threatened. Despite the high ecological and socioenvironmental value of coastal wetlands, regional and national vulnerability assessments are scarce. In this study we aimed to assess the vulnerability of coastal wetlands in Chile from 18°S to 42°S (n = 757) under a multiscale approach that included drivers associated with climate change and land cover change. We assessed multiple drivers of vulnerability at three spatial scales (10 m, 100 m, and 500 m) by analyzing multiple remote sensing data (16 variables) on land cover change, wildfires, climatic variables, vegetation functional properties, water surface and importance for biodiversity. We constructed a multifactorial vulnerability index based on the variables analyzed, which provided a map of coastal wetland vulnerability. Then we explored the main drivers associated with the vulnerability of each coastal wetland by performing a Principal Components Analysis with Agglomerative Hierarchical Clustering, which allowed us to group coastal wetlands according to the drivers analyzed. We found that 42.6 ± 9.2 % of the coastal wetlands evaluated have high or very high vulnerability, with higher vulnerability at the 500 m scale (51.4 %). We identified four groups of coastal wetlands: two located in central Chile, mainly affected by climate change-associated drivers (41.9 ± 2.1 %), and one in central Chile which is affected by land cover change (52.8 ± 6.2 %); the latter has a lower vulnerability level. The most vulnerable coastal wetlands were located in central Chile. Our results present novel findings about the current vulnerability of coastal wetlands, which could be validated by governmental institutions in field campaigns. Finally, we believe that our methodological approach could be useful to generate similar assessments in other world zones.
Collapse
Affiliation(s)
- Claudia Hidalgo-Corrotea
- Departamento de Gestión Agraria, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile; Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco, Chile; Centro de Formación Técnica del Medio Ambiente - IDMA, Santiago, Chile
| | - Alberto J Alaniz
- Departamento de Gestión Agraria, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile; Centro de Formación Técnica del Medio Ambiente - IDMA, Santiago, Chile.
| | - Pablo M Vergara
- Departamento de Gestión Agraria, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Darío Moreira-Arce
- Departamento de Gestión Agraria, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile; Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| | - Mario A Carvajal
- Departamento de Gestión Agraria, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Patricio Pacheco-Cancino
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco, Chile
| | - Alejandro Espinosa
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco, Chile
| |
Collapse
|
3
|
Cheng T, Pan Y, Wang X, Li Y. Community plant height modulated by aridity promotes spatial vegetation patterns in Alxa plateau in Northwest China. Ecol Evol 2023; 13:e9823. [PMID: 36818527 PMCID: PMC9929261 DOI: 10.1002/ece3.9823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023] Open
Abstract
Spatial vegetation patterns are associated with ecosystem stability and multifunctionality in drylands. Changes in patch size distributions (PSDs) are generally driven by both environmental and biological factors. However, the relationships between these factors in driving PSDs are not fully understood. We investigated 80 vegetation plots along an aridity gradient in the Alxa plateau, Northwest China. The sizes of vegetation patches were obtained from aerial images, and the heights of patch-forming species were measured in the field. Soil samples were collected on the bare ground between patches for determination of physiochemical properties. Point pattern analysis was used to infer plant-plant interactions. A model selection procedure was employed to select the best predictors for the shape of PSDs and biological factors (vegetation total cover, community plant height, and plant-plant interactions). We then used structural equation modeling to evaluate the direct and indirect effects of environmental and biological factors on the shape of PSDs. In our study area, two types of PSDs coexisted, namely those that best fit to power law distributions and those that best fit to lognormal distributions. Aridity was the main environmental factor, while community mean height and competition between plants were the main biological factors for the shape of PSDs. As aridity and community mean height increased, power law-like PSDs were exhibited, whereas competition led to deviations of PSDs from power laws. Aridity affected the shape of PSDs indirectly through changes in community mean height. Community mean height was correlated with competition, thereby indirectly affecting the shape of PSDs. Our results suggest the use of community functional traits as a link between the environment and plant-plant interactions, which may improve the understanding of the underlying mechanisms of PSD dynamics.
Collapse
Affiliation(s)
- Tian‐liang Cheng
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina
- Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Yan‐xia Pan
- Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Xin‐ping Wang
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina
- Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Yan Li
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina
| |
Collapse
|
4
|
Watershed Ecohydrological Processes in a Changing Environment: Opportunities and Challenges. WATER 2022. [DOI: 10.3390/w14091502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Basin ecohydrological processes are essential for informing policymaking and social development in response to growing environmental problems. In this paper, we review watershed ecohydrology, focusing on the interaction between watershed ecological and hydrological processes. Climate change and human activities are the most important factors influencing water quantity and quality, and there is a need to integrate watershed socioeconomic activities into the paradigm of watershed ecohydrological process studies. Then, we propose a new framework for integrated watershed management. It includes (1) data collection: building an integrated observation network; (2) theoretical basis: attribution analysis; (3) integrated modeling: medium- and long-term prediction of ecohydrological processes by human–nature interactions; and (4) policy orientation. The paper was a potential solution to overcome challenges in the context of frequent climate extremes and rapid land-use change.
Collapse
|