1
|
Wang J, Fang P, Li L, Li L. Colorimetric nanozyme sensor based on chain-like PtNi nanoparticles for nitrite ion detection in food samples. Food Chem 2025; 487:144715. [PMID: 40373716 DOI: 10.1016/j.foodchem.2025.144715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Here, we combine the peroxidase-like activity of chain-like PtNi nanoparticles (PtNi CNPs) and diazotization reaction to construct a dual-signal ratiometric colorimetric platform for nitrite ion detection. Compared to Pt NPs, PtNi CNPs exhibit better peroxidase-like activities with Michaelis constant (Km) of 0.15 mM and maximum reaction rate (Vmax) of 8.09 × 10-8 Ms.-1 towards 3, 3', 5, 5'-tetramethylbenzidine (TMB) and Km of 5.08 mM and Vmax of 16.07 × 10-8 Ms.-1 towards H2O2. After adding nitrite ion, diazotization reaction between oxidized TMB and nitrite ion occurs, resulting in an attenuated absorption peak signal at 652 nm and an enhanced absorption peak signal at 450 nm, accompanied by a color change (blue-yellow green). This dual-signal ratiometric (A652 nm/A450 nm) method shows a good linear relationship ranging from 20 to 350 μM and 0.3237 μM of detection limit. Importantly, the method shows great potential in detecting nitrite ion in real food samples.
Collapse
Affiliation(s)
- Junli Wang
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China.
| | - Panpan Fang
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China
| | - Lei Li
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, International Joint Laboratory of Henan Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Li Li
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China
| |
Collapse
|
2
|
Cheng S, Chen H, Li H, Li L, Lu Y, Jin B, He X. Fast preparing bioelectrode with conductive bioink for nitrite detection in high sensitivity and stability. ENVIRONMENTAL RESEARCH 2024; 263:120093. [PMID: 39368596 DOI: 10.1016/j.envres.2024.120093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Electrochemically active biofilms (EABs) for nitrite detection have high specificity, rapid response, operational simplicity, and extended lifespan advantages. However, their scale production remains challenging due to time-consuming and uniform preparation. In this study, a novel approach was proposed to fast fabricate an EAB biosensor with a synthetic biofilm electrode for nitrite detection. The biofilm electrode was prepared by coating bioinks with varying conductive materials onto the surface of the graphite sheets, showing short incubation time and good reproducibility. Incorporating conductive materials into the bioinks remarkably enhanced the maximum voltage of the first cycle of bioelectrode incubation, with an increase of up to 633% for carbon nanofibers. The nitrite reduction current was amplified by a factor of 2.97, due to the enhancement of extracellular electron transfer (EET). The developed nitrite biosensor exhibited a detection range of 0.1-15 mg NO2--N L-1, with a high sensitivity of 610.8 μA mM-1 cm-2, and a stabilization operation time of at least 280 cycles. This study not only provided valuable insights into conductive materials for synthetic biofilms but also presented a practical approach for the rapid preparation, scale production, and optimization of highly sensitive and stable EAB sensors.
Collapse
Affiliation(s)
- Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Hua Chen
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Huahua Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Longxin Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yi Lu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Beichen Jin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Xinyuan He
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
3
|
Shi X, Liang Y, Wen G, Evlashin SA, Fedorov FS, Ma X, Feng Y, Zheng J, Wang Y, Shi J, Liu Y, Zhu W, Guo P, Kim BH. Review of cathodic electroactive bacteria: Species, properties, applications and electron transfer mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174332. [PMID: 38950630 DOI: 10.1016/j.scitotenv.2024.174332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Cathodic electroactive bacteria (C-EAB) which are capable of accepting electrons from solid electrodes provide fresh avenues for pollutant removal, biosensor design, and electrosynthesis. This review systematically summarized the burgeoning applications of the C-EAB over the past decade, including 1) removal of nitrate, aromatic derivatives, and metal ions; 2) biosensing based on biocathode; 3) electrosynthesis of CH4, H2, organic carbon, NH3, and protein. In addition, the mechanisms of electron transfer by the C-EAB are also classified and summarized. Extracellular electron transfer and interspecies electron transfer have been introduced, and the electron transport mechanism of typical C-EAB, such as Shewanella oneidensis MR-1, has been combed in detail. By bringing to light this cutting-edge area of the C-EAB, this review aims to stimulate more interest and research on not only exploring great potential applications of these electron-accepting bacteria, but also developing steady and scalable processes harnessing biocathodes.
Collapse
Affiliation(s)
- Xinxin Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yutong Liang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Stanislav A Evlashin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Fedor S Fedorov
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, p.1, Moscow 121205, Russia
| | - Xinyue Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Junjie Zheng
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yixing Wang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Julian Shi
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Yang Liu
- Shaanxi Land Engineering Construction Group Co., Ltd, Xi'an 710061, China
| | - Weihuang Zhu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pengfei Guo
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Byung Hong Kim
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China; Korea Institute of Science & Technology, Seongbug-ku, Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Xue J, Wang Y, Jing Y, Li X, Chen S, Xu Y, Song RB. Recent advances in microbial fuel cell-based self-powered biosensors: a comprehensive exploration of sensing strategies in both anode and cathode modes. Anal Bioanal Chem 2024; 416:4649-4662. [PMID: 38457006 DOI: 10.1007/s00216-024-05230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
With the rapid development of society, it is of paramount importance to expeditiously assess environmental pollution and provide early warning of toxicity risks. Microbial fuel cell-based self-powered biosensors (MFC-SPBs) have emerged as a pivotal technology, obviating the necessity for external power sources and aligning with the prevailing trends toward miniaturization and simplification in biosensor development. In this case, vigorous advancements in MFC-SPBs have been acquired in past years, irrespective of whether the target identification event transpires at the anode or cathode. The present article undertakes a comprehensive review of developed MFC-SPBs, categorizing them into substrate effect and microbial activity effect based on the nature of the target identification event. Furthermore, various enhancement strategies to improve the analytical performance like accuracy and sensitivity are also outlined, along with a discussion of future research trends and application prospects of MFC-SPBs for their better developments.
Collapse
Affiliation(s)
- Junjun Xue
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Yuxin Wang
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Jing
- Henan Joint International Research Laboratory of Intelligent Water Treatment System, Qingshuiyuan Technology Co., Ltd., Jiyuan, China
| | - Xiaoxuan Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Suping Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
| | - Ying Xu
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| | - Rong-Bin Song
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou, China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Man Y, Yu K, Tan H, Jin X, Tao J, Pan L. A microfluidic concentration gradient colorimetric system for rapid detection of nitrite in surface water. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133133. [PMID: 38043431 DOI: 10.1016/j.jhazmat.2023.133133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
A microfluidic concentration gradient colorimetric detection system consisting of a microfluidic concentration gradient colorimetric detection chip, a self-built colorimetric signal acquisition box and a self-written smartphone APP was constructed for the rapid, in-field and visual quantitative detection of nitrite. Specifically, nitrite with initial concentration of C0 can be automatically diluted into 8 concentration gradients characterized by arithmetic series, and the concentrations are 0, 0.20 C0, 0.33 C0, 0.46 C0, 0.59 C0, 0.72 C0, 0.86 C0 and C0. The colorimetric signal acquisition box avoided the interference of light spots on data acquisition. Under the optimal experimental conditions, the quantitative detection of nitrite was achieved by the proposed two-step colorimetric method based on the inhibition of AuNPs signal amplification, and the limit of detection (LOD) was 0.14 mg/L. The microfluidic concentration gradient colorimetric detection system was able to detect nitrite as low as 0.43 mg/L and showed a good specificity. The practical application was investigated by analyzing 10 actual samples of river and lake water, pure water and tap water. The recoveries of the microfluidic concentration gradient colorimetric detection system ranged from 94.92% to 105.60%, which indicates that the method had a good application prospect in the detection of practical samples.
Collapse
Affiliation(s)
- Yan Man
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China.
| | - Kaijia Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia, China
| | - Huimin Tan
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
| | - Xinxin Jin
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
| | - Jing Tao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
| | - Ligang Pan
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
| |
Collapse
|
6
|
Wang K, Li J, Gu X, Wang H, Li X, Peng Y, Wang Y. How to Provide Nitrite Robustly for Anaerobic Ammonium Oxidation in Mainstream Nitrogen Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21503-21526. [PMID: 38096379 DOI: 10.1021/acs.est.3c05600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Innovation in decarbonizing wastewater treatment is urgent in response to global climate change. The practical implementation of anaerobic ammonium oxidation (anammox) treating domestic wastewater is the key to reconciling carbon-neutral management of wastewater treatment with sustainable development. Nitrite availability is the prerequisite of the anammox reaction, but how to achieve robust nitrite supply and accumulation for mainstream systems remains elusive. This work presents a state-of-the-art review on the recent advances in nitrite supply for mainstream anammox, paying special attention to available pathways (forward-going (from ammonium to nitrite) and backward-going (from nitrate to nitrite)), key controlling strategies, and physiological and ecological characteristics of functional microorganisms involved in nitrite supply. First, we comprehensively assessed the mainstream nitrite-oxidizing bacteria control methods, outlining that these technologies are transitioning to technologies possessing multiple selective pressures (such as intermittent aeration and membrane-aerated biological reactor), integrating side stream treatment (such as free ammonia/free nitrous acid suppression in recirculated sludge treatment), and maintaining high activity of ammonia-oxidizing bacteria and anammox bacteria for competing oxygen and nitrite with nitrite-oxidizing bacteria. We then highlight emerging strategies of nitrite supply, including the nitrite production driven by novel ammonia-oxidizing microbes (ammonia-oxidizing archaea and complete ammonia oxidation bacteria) and nitrate reduction pathways (partial denitrification and nitrate-dependent anaerobic methane oxidation). The resources requirement of different mainstream nitrite supply pathways is analyzed, and a hybrid nitrite supply pathway by combining partial nitrification and nitrate reduction is encouraged. Moreover, data-driven modeling of a mainstream nitrite supply process as well as proactive microbiome management is proposed in the hope of achieving mainstream nitrite supply in practical application. Finally, the existing challenges and further perspectives are highlighted, i.e., investigation of nitrite-supplying bacteria, the scaling-up of hybrid nitrite supply technologies from laboratory to practical implementation under real conditions, and the data-driven management for the stable performance of mainstream nitrite supply. The fundamental insights in this review aim to inspire and advance our understanding about how to provide nitrite robustly for mainstream anammox and shed light on important obstacles warranting further settlement.
Collapse
Affiliation(s)
- Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
7
|
Pogăcean F, Varodi C, Măgeruşan L, Pruneanu S. Highly Sensitive Graphene-Based Electrochemical Sensor for Nitrite Assay in Waters. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091468. [PMID: 37177012 PMCID: PMC10179868 DOI: 10.3390/nano13091468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
The importance of nitrite ions has long been recognized due to their extensive use in environmental chemistry and public health. The growing use of nitrogen fertilizers and additives containing nitrite in processed food items has increased exposure and, as a result, generated concerns about potential harmful health consequences. This work presents the development of an electrochemical sensor based on graphene/glassy carbon electrode (EGr/GC) with applicability in trace level detection of nitrite in water samples. According to the structural characterization of the exfoliated material, it appears as a mixture of graphene oxide (GO; 21.53%), few-layers graphene (FLG; 73.25%) and multi-layers graphene (MLG; 5.22%) and exhibits remarkable enhanced sensing response towards nitrite compared to the bare electrode (three orders of magnitude higher). The EGr/GC sensor demonstrated a linear range between 3 × 10-7 and 10-3 M for square wave voltammetry (SWV) and between 3 × 10-7 and 4 × 10-4 M for amperometry (AMP), with a low limit of detection LOD (9.9 × 10-8 M). Excellent operational stability, repeatability and interference-capability were displayed by the modified electrode. Furthermore, the practical applicability of the sensor was tested in commercially available waters with excellent results.
Collapse
Affiliation(s)
- Florina Pogăcean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Codruţa Varodi
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Lidia Măgeruşan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Stela Pruneanu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Anindya W, Wahyuni WT, Rafi M, Putra BR. Electrochemical Sensor Based on Graphene Oxide/PEDOT:PSS Composite Modified Glassy Carbon Electrode for Environmental Nitrite Detection. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
9
|
Wu K, Yang W, Yan Z, Wang H, Zheng Z, Jiang A, Wang X, Tang Z. Accurate quantification, naked eyes detection and bioimaging of nitrite using a colorimetric and near-infrared fluorescent probe in food samples and Escherichia coli. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121692. [PMID: 35921752 DOI: 10.1016/j.saa.2022.121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Nitrite (NO2-) is an inorganic contaminant that exists widely in the environment including water and food products, excessive amounts of NO2- would threaten humans and aquatic life. Developing a rapid and convenient sensing method for NO2- remains a great challenge. Herein, a colorimetric and near-infrared fluorescent probe (TBM) was synthesized and applied for sensitively and selectively detecting NO2- in water, food samples and Escherichia coli (E. coli). With the addition of NO2-, the probe TBM solution has a distinct visual color changed from red to colorless and fluorescence intensity at 620 nm quickly decreased. The probe TBM could detect NO2- quantitatively with a detection limit of 85 nM based on a 3σ/slope. Under optimum conditions, TBM has been successfully used to detect NO2- in real-world environmental and dietary samples, with positive results. Besides, paper strips loaded with TBM have been used to visually determine NO2- levels. Most importantly, TBM has also been proven to be able to discriminate from different concentrations of NO2- in E. coli by fluorescence imaging. In summary, the probe TBM was successfully developed for the accurate quantification, naked eyes detection and bioimaging of NO2- in water, food samples and E. coli, which provides a useful tool to better guarantee the quality and safety of daily life and food industry.
Collapse
Affiliation(s)
- Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Wenjie Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhi Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Haichao Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhijuan Zheng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Anqi Jiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Zhixin Tang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
10
|
Cheng S, Lin Z, Sun Y, Li H, Ren X. Fast and simultaneous detection of dissolved BOD and nitrite in wastewater by using bioelectrode with bidirectional extracellular electron transport. WATER RESEARCH 2022; 213:118186. [PMID: 35183014 DOI: 10.1016/j.watres.2022.118186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Timely and simultaneously detecting BOD and nitrite concentrations is of great significance for curbing of water pollution and adjusting wastewater treatment strategies. However, existing BOD and nitrite biosensors cannot perform synchronous detection due to their single electroactivity and differences in detection time. This study reported a novel dual-function electrochemical biosensor (DFEB) that could perform fast, simultaneous detection of nitrite and dissolved BOD. DFEB conducted a potential-step chronoamperometry on the mixed-bacteria bioelectrode with bidirectional electron transfer ability to obtain response signals. DFEB accurately measured dissolved BOD in the range of 5 ∼ 100 mg BOD L-1 and nitrite in the range of 0.05 ∼ 16 mg NO2--N L-1 within 20 min and maintain stable performance over 200 tests. DFEB performed well in artificial wastewater, aquatic wastewater, anaerobic tank effluent and anammox effluent, with relative errors < 15.7% and 16.8% in detecting nitrite and dissolved BOD, respectively. Our study provided a feasible way to develop multifunctional biosensors for detecting pollutants with different redox properties in wastewater.
Collapse
Affiliation(s)
- Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhufan Lin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yi Sun
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China; PowerChina Huadong Engineering Co. Ltd., Hangzhou 310014, China
| | - Huahua Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiangrong Ren
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|