1
|
Li Y, Zhang S, Fu H, Sun Y, Tang S, Xu J, Li J, Gong X, Shi L. Immobilization or mobilization of heavy metal(loid)s in lake sediment-water interface: Roles of coupled transformation between iron (oxyhydr)oxides and natural organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178302. [PMID: 39740622 DOI: 10.1016/j.scitotenv.2024.178302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system. In this review, we summarized (1) the bidirectional effect between Fe (oxyhydr)oxides and NOM, including preservation, decomposition, electron transfer, adsorption, reactive oxygen species production, and crystal transformation; (2) the potential roles of coupled transformation between Fe and NOM in the environmental behavior of HMs from kinetic and thermodynamic processes; (3) the primary factors affecting the remediation of sediments HMs; (4) the challenges and future development of sediment HM control based on the coupled effect between Fe and NOM from theoretical and practical perspectives. Overall, this review focused on the biogeochemical coupling cycle of Fe, NOM, and HMs, with the goal of providing guidance for HMs contamination and risk control in lake sediment.
Collapse
Affiliation(s)
- Yuanhang Li
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China; School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Shaokang Zhang
- School of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, China
| | - Hang Fu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Yuheng Sun
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Shoujuan Tang
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jinwen Xu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Jun Li
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Xiaofeng Gong
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Lei Shi
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
2
|
Zhang J, Guo C, Zhou Y, Deng Y, Dang Z. Effect of Mn(II) photochemical oxidation on Cd immobilization in hematite. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135687. [PMID: 39236538 DOI: 10.1016/j.jhazmat.2024.135687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Hematite, a commonly stable iron oxide in the environment, which can not only adsorb Cd in the environment, but also catalyze the photochemical oxidation of Mn(II) in the environment. However, the impact of Mn(II) on the structure of hematite and the adsorption of Cd during the surface oxidation of hematite remains unknown. In this study, we investigated the surface and structural changes of hematite after the photochemical oxidation of Mn(II), as well as the geochemical behavior of Cd during this process. The results demonstrate that Mn(II) was oxidized to Mn(III/IV) on the hematite surface, with some Mn(III) being incorporated into the hematite structure. Simulations using XRD data showed that higher Mn(II) concentrations resulted in increased levels of Mn doping, leading to significant variations in the hematite unit cell. This was further confirmed through FTIR and Raman spectroscopy characterization. The oxidation of Mn(II) on the hematite surface resulted in a shift in surface charge from positive to negative, enhancing the adsorption capacity of Cd. However, when Mn(II) exceeded 0.4 mM, the immobilization of Cd within the system decreased. This was attributed to the competitive adsorption of Mn(II) and a reduction in the relative abundance of Mn(IV) oxides.
Collapse
Affiliation(s)
- Jiawei Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Yuting Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Yanping Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
3
|
Jin Z, Liang L, Zhao Z, Zhang Y. Enhancing assimilatory sulfate reduction with ferrihydrite-humic acid coprecipitate in anaerobic sulfate-containing wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 411:131308. [PMID: 39155018 DOI: 10.1016/j.biortech.2024.131308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Sulfide produced from dissimilatory sulfate reduction can combine with hydrogen to form hydrogen sulfide, causing odor issues and environmental pollution. To address this problem, ferrihydrite-humic acid coprecipitate was added to improve assimilatory sulfate reduction (ASR), resulting in a decrease in sulfide production (190.2 ± 14.6 mg/L in the Fh-HA group vs. 246.3 ± 8.1 mg/L in the Fh group) with high sulfate removal. Humic acid, adsorbed on the surface of ferrihydrite, delayed secondary mineralization of ferrihydrite under sulfate reduction condition. Therefore, more iron-reducing species (e.g. Trichococcus, Geobacter) were enriched with ferrihydrite-humic acid coprecipitate to transfer more electrons to other species, which led to more COD reduction, an increase in electron transfer capacity, and a decrease in the NADH/NAD+ ratio. Metagenomic analysis also indicated that functional genes related to ASR was enhanced with ferrihydrite-humic acid coprecipitate. Thus, the addition of ferrihydrite-humic acid coprecipitate can be considered as a promising candidate for anaerobic sulfate wastewater treatment.
Collapse
Affiliation(s)
- Zhen Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lianfu Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Qiao H, Liu Z, Peng X, Xian H, Cheng K, Yang F. Significance of humic matters-soil mineral interactions for environmental remediation: A review. CHEMOSPHERE 2024; 365:143356. [PMID: 39303791 DOI: 10.1016/j.chemosphere.2024.143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Industrial and human activities have led to serious soil and water pollution. Traditional remediation techniques have problems such as high treatment costs and the tendency to cause secondary pollution. Soil minerals and humic matters are common active components in soils. Both play vital roles and are frequently bound together to form humic matters-mineral complexes, which are considered sustainable and eco-friendly materials for environmental remediation and improvement. However, due to the complexity of humic matters-mineral interactions and the wide variation in the removal of different pollutants, there is a lack of research in this area. This paper provides a comprehensive introduction and summary of the interaction mechanisms between humic matters and typical soil minerals such as layered phosphate minerals and iron oxides, and their applications in environmental remediation, especially for the treatment of heavy metals (lead, mercury, chromium and cadmium) and organic pollutants (antibiotics, pesticides and polycyclic aromatic hydrocarbons) in water and soil. The humic matters-mineral complex can reduce the toxicity and migration rate of pollutants through adsorption, electrostatic attraction, together with H-bonding and hydrophobic interactions, reducing the harm of these pollutants to soil and water environments and realizing the efficient remediation of soil and water environments. And compared with the traditional treatment technology, this method is more green and environmental protection, and the treatment cost is greatly reduced. Finally, the deficiencies of using humic matters-mineral complex to achieve soil and water remediation were summarized and also proposed directions for future endeavors as well as concrete measures.
Collapse
Affiliation(s)
- Hui Qiao
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China
| | - Xiongxin Peng
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China
| | - Husheng Xian
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China
| | - Kui Cheng
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China.
| |
Collapse
|
5
|
Qin X, Guinoiseau D, Ren Z, Benedetti MF. Redox control of chromium in the red soils from China evidenced by Cr stable isotopes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133406. [PMID: 38194769 DOI: 10.1016/j.jhazmat.2023.133406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
With chromium isotopes, we study the intricate dynamics of adsorption and redox processes in soil ecosystems, focusing on chromium's behaviour, in red soil profiles enriched with iron-manganese nodules (FMNs) in South China. Key findings reveal that the primary geological source of chromium in the red soil profiles is the weathering of colluvium parent minerals. FMNs have higher chromium concentrations (325-1451 µg/g) compared to surrounding soils (95-247 µg/g) and display stable δ53Cr values (0.78 ± 0.17‰), indicating their role as stable chromium repositories, reflecting historical processes. Furthermore, by isolating chromium associated with iron oxides (FeO) and silicate minerals (ReS) within FMNs and surrounding soils using CBD extractions, we show that FeO predominantly carry chromium, particularly in FMNs. The δ53Cr values of FeO fractions consistently exhibit heavier signatures than ReS fractions, suggesting the sequestration of isotopically heavy chromium (VI) during Fe oxide precipitation. Fluctuations in soil's redox, rather than land use, play a pivotal role in controlling the precipitation of Fe oxides in surrounding soils and the formation of FMNs, thus influencing chromium mobility. This highlights the significance of these factors when utilizing chromium isotopic techniques for source tracking in soil systems, contributing to our understanding of chromium's behaviour in soil environments.
Collapse
Affiliation(s)
- Xiaoquan Qin
- Université Paris Cité - Institut de Physique du globe de Paris, CNRS, F75005 Paris, France
| | | | - Zongling Ren
- Department of Soil Science, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Marc F Benedetti
- Université Paris Cité - Institut de Physique du globe de Paris, CNRS, F75005 Paris, France.
| |
Collapse
|
6
|
Sun L, Wu J, Chen M, Wang T, Shang Z, Liu J, Huang M, Wu P. Interaction of polystyrene nanoplastics with impurity-bearing ferrihydrite and implication on complex particle sedimentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165928. [PMID: 37527713 DOI: 10.1016/j.scitotenv.2023.165928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/13/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Nanoplastics (NPs) usually coexist with impurity-bearing ferrihydrite (ImFh), and their interaction is related to their environmental fate. In this study, the aggregation between ImFh (impurities: Al, Mn and Si) and polystyrene nanoplastics (PSNPs), as well as the sedimentation of ImFh-PSNP complex particles in the aqueous phase were investigated systematically with particle concentrations of 100 mg/L ImFh and 10 mg/L PSNPs. Our results revealed that the PSNP suspension was dispersive and stable under various pH values and low ion strength. After coexisting with ImFh, PSNPs aggregated with the positively charged ImFh to form ImFh-PSNP complex particles, which destroyed the stability of PSNPs. The increase in pH and Na+ concentration could inhibit their aggregation, but high Na+ concentration (>20 mM) caused the homoaggregation of PSNPs. The aggregation capacity of PSNPs with ImFh was in the order of Al-bearing Fh > Fh > Mn-bearing Fh > Si-bearing Fh. Zeta potential and Derjaguin-Landau-Verwey-Overbeek (DLVO) calculations indicated that Al-bearing Fh showed higher positive potential than pure Fh, which caused stronger electrostatic interactions with PSNPs. However, Mn and Si in ImFh decreased the positive potential and inhibited the electrostatic interaction with PSNPs, and the effect of Si was greater than that of Mn. The aggregation between ImFh and PSNPs inhibited the sedimentation of their complex particles, and the higher aggregation capacity appeared to have a greater inhibition degree. Due to the "electrostatic patches" effect of PSNPs, the energy barrier of the ImFh-PSNPs particles was higher than that of the ImFh particles. Our findings clarified the influence of impurities on the interaction between ImFh and PSNPs and provided insight regarding their fate in the environment.
Collapse
Affiliation(s)
- Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Zhongbo Shang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jieyu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Minye Huang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Zhang Q, Qin Z, Xiahou J, Li Y, Yan Y, Feng X, Li W, Lan S. Effects and mechanisms of Al substitution on the catalytic ability of ferrihydrite for Mn(II) oxidation and the subsequent oxidation and immobilization of coexisting Cr(III). JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131351. [PMID: 37027918 DOI: 10.1016/j.jhazmat.2023.131351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/28/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Al(III)-substituted ferrihydrite existing in natural soils is more common than pure ferrihydrite; however, the effects of Al(III) incorporation on the interaction between ferrihydrite, Mn(II) catalytic oxidation, and coexisting transition metal (e.g., Cr(III)) oxidation remain elusive. To address this knowledge gap, Mn(II) oxidation on synthetic Al(III)-incorporated ferrihydrite and Cr(III) oxidation on the previously formed Fe-Mn binaries were investigated in this study via batch kinetic studies combined with various spectroscopic analyses. The results indicate that Al substitution in ferrihydrite barely changes its morphology, specific surface area, or the types of surface functional groups, but increases the total amount of hydroxyl on the ferrihydrite surface and enhances its adsorption capacity toward Mn(II). Conversely, Al substitution inhibits electron transfer in ferrihydrite, thereby weakening its electrochemical catalysis on Mn(II) oxidation. Thus, the contents of Mn(III/IV) oxides with higher Mn valence states decrease, whereas those of lower Mn valence states increase. Furthermore, the number of hydroxyl radicals formed during Mn(II) oxidation on ferrihydrite decreases. These inhibitions of Al substitution on Mn(II) catalytic oxidation subsequently cause decreased Cr(III) oxidation and poor Cr(VI) immobilization. Additionally, Mn(III) in Fe-Mn binaries is confirmed to play a dominant role in Cr(III) oxidation. This research facilitates sound decision-making regarding the management of Cr-contaminated soil environments enriched with Fe and Mn.
Collapse
Affiliation(s)
- Qin Zhang
- Key Laboratory of Agricultural Resources and Ecology in Poyang Lake Watershed of Ministry of Agriculture and Rural Affairs in China, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhangjie Qin
- Key Laboratory of Agricultural Resources and Ecology in Poyang Lake Watershed of Ministry of Agriculture and Rural Affairs in China, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jian Xiahou
- Key Laboratory of Agricultural Resources and Ecology in Poyang Lake Watershed of Ministry of Agriculture and Rural Affairs in China, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China; Ganzhou Vegetable Quality Standards Center, Ganzhou 341000, China
| | - Yang Li
- Key Laboratory of Agricultural Resources and Ecology in Poyang Lake Watershed of Ministry of Agriculture and Rural Affairs in China, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yupeng Yan
- Key Laboratory of Agricultural Resources and Ecology in Poyang Lake Watershed of Ministry of Agriculture and Rural Affairs in China, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Li
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Shuai Lan
- Key Laboratory of Agricultural Resources and Ecology in Poyang Lake Watershed of Ministry of Agriculture and Rural Affairs in China, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
8
|
The potential of ferrihydrite-synthetic humic-like acid composite to remove metal ions from contaminated water: Performance and mechanism. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
High Regeneration of ZnAl/NiAl-Magnetite Humic Acid for Adsorption of Congo Red from Aqueous Solution. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
10
|
Zhang W, Zhao K, Wan B, Liang Z, Xu W, Li J. Chromium Transport and Fate in Vadose Zone: Effects of Simulated Acid Rain and Colloidal Types. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16414. [PMID: 36554303 PMCID: PMC9778184 DOI: 10.3390/ijerph192416414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Chromium (Cr) can enter groundwater through rainfall infiltration and significantly affects human health. However, the mechanisms by which soil colloids affect chromium transport are not well investigated. In this study, column experiments were conducted to simulate the chromium (Cr) transport mechanism in two typical soils (humic acid + cinnamon soil and montmorillonite + silt) in the vadose zone of a contaminated site and the effects of acid rain infiltration conditions. The results showed that Mt colloids have less influence on Cr. The fixation of Cr by colloid mainly occurs in the cinnamon soil layer containing HA colloid. The adsorption efficiency of Cr was increased by 12.8% with the addition of HA. In the HA-Cr system, the introduction of SO42- inhibited the adsorption of Cr, reducing the adsorption efficiency from 31.4% to 24.4%. The addition of Mt reduced the adsorption efficiency of Cr by 15%. In the Mt-Cr system, the introduction of SO42- had a promoting effect on Cr adsorption, with the adsorption efficiency increasing from 4.4% to 5.1%. Cr release was inhibited by 63.88% when HA colloid was present, but the inhibition owing to changes in acidity was only 14.47%. Mt colloid promotes Cr transport and increases the leaching rate by 2.64% compared to the absence of Mt. However, the effect of acidity change was not significant. Intermittent acid rain will pose a higher risk of pollutant release. Among the influencing factors, the type of colloid had the most significant influence on the efficiency of Cr leaching. This study guides the quantitative assessment of groundwater pollution risk caused by Cr in the vadose zone.
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Kaichao Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Bo Wan
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Zhentian Liang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Wenyan Xu
- Chemical Geological Prospecting Institute of Liaoning Province Co., Ltd., Jinzhou 121007, China
| | - Jingqiao Li
- Songliao Water Resources Commission, Ministry of Water Resources, Changchun 130021, China
| |
Collapse
|
11
|
Yang W, Huang C, Wan X, Zhao Y, Bao Z, Xiang W. Enhanced Adsorption of Cd on Iron-Organic Associations Formed by Laccase-Mediated Modification: Implications for the Immobilization of Cadmium in Paddy Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15650. [PMID: 36497725 PMCID: PMC9737542 DOI: 10.3390/ijerph192315650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The objectives of this study were to evaluate the cadmium adsorption capacity of iron-organic associations (Fe-OM) formed by laccase-mediated modification and assess the effect of Fe-OM on the immobilization of cadmium in paddy soil. Leaf organic matter (OM) was extracted from Changshan grapefruit leaves, and then dissolved organic matter (Lac-OM) and precipitated organic matter (Lac-P) were obtained by laccase catalytic modification. Different Fe-OM associations were obtained by co-precipitation of Fe with OM, Lac-OM, and Lac-P, respectively, and the adsorption kinetics, adsorption edge, and isothermal adsorption experiments of Cd on Fe-OM were carried out. Based on the in situ generation of Fe-OM, passivation experiments on Cd-contaminated soils with a high geological background were carried out. All types of Fe-OM have a better Cd adsorption capacity than ferrihydrite (FH). The theoretical maximum adsorption capacity of the OM-FH, Lac-OM-FH, and Lac-P-FH were 2.2, 2.53, and 2.98 times higher than that of FH, respectively. The adsorption of Cd on Fe-OM is mainly chemisorption, and the -OH moieties on the Fe-OM surface form an inner-sphere complex with the Cd ions. Lac-OM-FH showed a higher Cd adsorption capacity than OM-FH, which is related to the formation of more oxygen-containing groups in the organic matter modified by laccase. The immobilization effect of Lac-OM-FH on active Cd in soil was also higher than that of OM-FH. The Lac-OM-FH formed by laccase-mediated modification has better Cd adsorption performance, which can effectively inactivate the activity of Cd in paddy soil.
Collapse
Affiliation(s)
- Weilin Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chunlei Huang
- Zhejiang Institute of Geological Survey, Hangzhou 312000, China
| | - Xiang Wan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Geological Survey, Wuhan 430034, China
| | - Yunyun Zhao
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wu Xiang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
12
|
Adsorption of methylene blue on magnetite humic acid: Kinetic, isotherm, thermodynamic, and regeneration studies. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|