1
|
Chen Y, Li D, Liu S, Song X, Li Z, Sun J, Xu Y, Hou J. Deposited dead algae influence the microbial communities and functional potentials on the surface sediment in eutrophic shallow lakes. ENVIRONMENTAL RESEARCH 2025; 271:121072. [PMID: 39922263 DOI: 10.1016/j.envres.2025.121072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/06/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Dead algae deposition will change the nutrient transformation on the sediment-water interface. However, the key factors that drive nutrient turnover, particularly the influence of sediment microbiota, remain poorly understood. As a result, this study conducted an 80-day simulated incubation to investigate the effect of different deposition of death algae on microbial communities and functional potentials in sediments. It was revealed that dead algae deposition changed the microbial communities and interactions. Changes in the bacteria are not only reflected in community composition and diversity but also in the interrelation among bacteria taxa, while changes in the fungi are mainly reflected in the interrelation among fungi taxa. Meanwhile, dead algae deposition increased the abundance of mostly functional genes related to the C, N, P, and S cycle processes and improved the function potentials of microorganisms. Both of them led to the increase of PO43-, NO3-, NH4+, and TOC content in the overlying water, influencing the nutrient cycle processes. Moreover, partial least squares path modeling indicated which key factors are to influence different nutrient cycle processes. Sediment nutrients directly influenced the P cycle process, whereas the C, N, and S cycle processes were directly affected by the changes in biological properties. These results provide a new perspective on the effects of dead algal deposition on the sediment nutrient cycle processes mediated by the sediment microbiota.
Collapse
Affiliation(s)
- Yanqi Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Xinyu Song
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Ziyu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Jingqiu Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Yao Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, PR China, 210098
| |
Collapse
|
2
|
Ye F, Deng M, Sun Z, Op den Camp HJM, Wu J, Wang Y, Hong Y. What causes the urban river to look darker? An underestimated source of sulfide production in methanogenic metabolism. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136847. [PMID: 39672065 DOI: 10.1016/j.jhazmat.2024.136847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The blackening and increased smelling of waterbodies steadily affect urban aquatic ecology. Sulfide is recognized as the key substance responsible for the darkening of urban rivers. However, the pathway of sulfide production and the underling microbial mechanisms in urban rivers are not fully understood. This study executes a comprehensive approach to investigate mechanism of sulfide production within urban river sediments, integrating field survey, laboratory incubations, and metagenomic sequencing. The results reveal that both sulfide concentrations and sulfidogenic activities in darker river sediments are significantly higher than in lighter rivers. Both the sulfate-reducing bacteria (SRB) and methanogenic communities are closely related to the sulfide content in the sediments. The finding that inhibiting SRB enhanced the potential sulfide production rate suggests the importance of methanogen-derived processes as a sulfide source in sediments. Notably, the abundance of methylated thiol coenzyme M methyltransferase genes increased 53-fold upon after the continuous methionine amendment, confirming that methanogen-derived processes, rather than SRB-derived ones, dominated sulfide production when methylated sulfur compounds are abundant. Overall, this study highlights the potential significance of methanogenesis as a hitherto underestimated sulfide source in urban river sediments, providing valuable insights for optimizing strategies to prevent and mitigate the deterioration of urban aquatic ecosystems.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Minshi Deng
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhaohong Sun
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | | | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
3
|
Xu L, Wang Q, Ou X, Zou L, Liu C, Yang Y. Seaweed burial mitigated the release of organic carbon and nutrients by regulating microbial activity. MARINE POLLUTION BULLETIN 2024; 208:116963. [PMID: 39299191 DOI: 10.1016/j.marpolbul.2024.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Seaweed debris is susceptible to being buried in sediments due to natural environmental changes and human activities. So far, the effect of buried seaweeds on the environment and its decomposition mechanism remains unclear. This study simulated the decomposition of seaweed Gracilariopsis lemaneiformis for 180 days with different burial depths (0 cm and 10 cm) and burial weights (10 g and 20 g). Our findings revealed that compared with Gracilariopsis decomposition on the sediment surface, the seaweed buried in sediment slowed down the release of N, P, and dissolved organic carbon (DOC) by enhancing the activity of diverse anaerobic microbes (i.e. Draconibacterium, Desulfuromusa, Sediminispirochaeta), which were associated with organic matter decomposition. The enhanced burial quantity of Gracilariopsis resulted in a 3.28 % increase in sediment OC and enriched the humification degree of DOC in seawater. These results highlight the role of seaweed burial in enhancing OC sequestration in marine environments.
Collapse
Affiliation(s)
- Lili Xu
- Institute of Hydrobiology, Key Laboratory of Philosophy and Social Science in Guangdong Province, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China
| | - Qing Wang
- Institute of Hydrobiology, Key Laboratory of Philosophy and Social Science in Guangdong Province, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China
| | - Xiaoli Ou
- Institute of Hydrobiology, Key Laboratory of Philosophy and Social Science in Guangdong Province, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China
| | - Ligong Zou
- Institute of Hydrobiology, Key Laboratory of Philosophy and Social Science in Guangdong Province, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China
| | - Chun Liu
- Department of Ecology, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Yufeng Yang
- Institute of Hydrobiology, Key Laboratory of Philosophy and Social Science in Guangdong Province, Jinan University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510632, China,.
| |
Collapse
|
4
|
Zhou C, Zhou M, Peng Y, Xu X, Terada A, Wang G, Zhong H, Kinouchi T. Unexpected increase of sulfate concentrations and potential impact on CH 4 budgets in freshwater lakes. WATER RESEARCH 2024; 261:122018. [PMID: 38971077 DOI: 10.1016/j.watres.2024.122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
The continuous increase in sulfate (SO42-) concentrations discharged by anthropogenic activities lacks insights into their dynamics and potential impact on CH4 budgets in freshwater lakes. Here we conducted a field investigation in the lakes along the highly developed Yangtze River basin, China, additionally, we analyzed long-term data (1950-2020) from Lake Taihu, a typical eutrophic lake worldwide. We observed a gradual increase in SO42- concentrations up to 100 mg/L, which showed a positive correlation with the trophic state of the lakes. The annual variations indicated that eutrophication intensified the fluctuation of SO42- concentrations. A random forest model was applied to assess the impact of SO42- concentrations on CH4 emissions, revealing a significant negative effect. Synchronously, a series of microcosms with added SO42- were established to simulate cyanobacteria decomposition processes and explore the coupling mechanism between sulfate reduction and CH4 production. The results showed a strong negative correlation between CH4 concentrations and initial SO42- levels (R2 = 0.83), indicating that higher initial SO42- concentrations led to lower final CH4 concentrations. This was attributed to the competition for cyanobacteria-supplied substrates between sulfate reduction bacteria (SRB) and methane production archaea (MPA). Our study highlights the importance of considering the unexpectedly increasing SO42- concentrations in eutrophic lakes when estimating global CH4 emission budgets.
Collapse
Affiliation(s)
- Chuanqiao Zhou
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Muchun Zhou
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China; Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Yu Peng
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Xiaoguang Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China.
| | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Guoxiang Wang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Zhong
- School of Environment, Nanjing University, Nanjing 210023, China
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| |
Collapse
|
5
|
He X, Yan W, Chen X, Li Q, Li M, Yan Y, Yan B, Yao Q, Li G, Wu T, Jia Y, Liu C. Degradation of algae promotes the release of arsenic from sediments under high-sulfate conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123154. [PMID: 38101530 DOI: 10.1016/j.envpol.2023.123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Sulfate concentrations in eutrophic waters continue to increase; however, the transformations of arsenic (As) in sediments under these conditions are unclear. In this study, we constructed a series of microcosms to investigate the effect of algal degradation on As transformations in sediments with high sulfate concentrations. The results showed that both the elevated sulfate levels and algal degradation enhanced the release of As from sediments to the overlying water, and degradation of algal in the presence of elevated sulfate levels could further contribute to As release. Sulfate competed with arsenate for adsorption in the sediments, leading to As desorption, while algal degradation created a strongly anaerobic environment, leading to the loss of the redox layer in the surface sediments. With high sulfate, algal degradation enhanced sulfate reduction, and sulfur caused the formation of thioarsenates, which may cause re-dissolution of the arsenides, enhancing As mobility by changing the As speciation. The results of sedimentary As speciation analysis indicated that elevated sulfur levels and algal degradation led to a shift of As from Fe2O3/oxyhydroxide-bound state to specifically adsorbed state at the sediment water interface. This study indicated that algal degradation increases the risk of As pollution in sulfate-enriched eutrophic waters.
Collapse
Affiliation(s)
- Xiangyu He
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Wenming Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| | - Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Qi Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Minjuan Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Yulin Yan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Binglong Yan
- Lianyungang Water Conservancy Planning and Designing Institute Co., Ltd., Lianyungang, 222006, China
| | - Qi Yao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Gaoxiang Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Tingfeng Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yushan Jia
- Shilianghe Reservoir Management Office, Lianyungang, 222006, China
| | - Congxian Liu
- Lianyungang Water Conservancy Bureau, Lianyungang, 222006, China
| |
Collapse
|
6
|
Xia L, van Dael T, Bergen B, Smolders E. Phosphorus immobilisation in sediment by using iron rich by-product as affected by water pH and sulphate concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160820. [PMID: 36526189 DOI: 10.1016/j.scitotenv.2022.160820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Iron (Fe) rich by-product from drinking water treatment plants can be added to rivers and lakes to immobilise phosphorus (P) in sediment and lower eutrophication risks. This study was set up to investigate the P immobilisation efficiency of an Fe rich by-product as affected by the pH and sulphate (SO4) concentration in the overlying water. Both factors are known to inhibit long-term P immobilisation under anoxic conditions. A static sediment-water incubation was conducted at varying buffered water pH values (6, 7 and 8) and different initial SO4 concentrations (0-170 mg SO4 L-1) with or without Fe rich by-product amendment to the sediment. In the unamended sediment, the P release to the overlying water was highest, and up to 6 mg P L-1, at lowest water pH due to higher reductive dissolution of Fe(III) oxyhydroxides. The Fe rich by-product amendment to the sediment largely reduced P release from sediment by factors 50-160 depending on pH, with slightly lowest immobilisation at highest pH 8, likely because of pH dependent P sorption. The total sulphur (S) concentrations in the overlying water reduced during incubation. The P release in unamended sediments increased from 2.7 mg L-1 to 4.2 mg L-1 with higher initial SO4 concentrations, suggesting sulphide formation during incubation and FeS precipitation that facilitates release of P. However, no such SO4 effects were found where Fe rich by-product was applied that lowered P release to <0.1 mg L-1 illustrating high stability of immobilised P in amended sediments. This study suggests that Fe rich by-product is efficient for P immobilisation but that loss of Fe in low pH water may lower its long-term effect.
Collapse
Affiliation(s)
- Lei Xia
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | - Toon van Dael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Benoit Bergen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Erik Smolders
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| |
Collapse
|
7
|
Zhou M, Zhou C, Peng Y, Jia R, Zhao W, Liang S, Xu X, Terada A, Wang G. Space-for-time substitution leads to carbon emission overestimation in eutrophic lakes. ENVIRONMENTAL RESEARCH 2023; 219:115175. [PMID: 36584848 DOI: 10.1016/j.envres.2022.115175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Lacustrine eutrophication is generally considered as an important contributor of carbon emissions to the atmosphere; however, there is still a huge challenge in accuracy estimating carbon emissions from lakes. To test the effect of widely used space-for-time substitution on lake carbon emissions, this study monitored different processes of carbon emissions, including the carbon production potential, dissolved carbon concentrations, and carbon release fluxes in eight lakes along the trophic gradients on a spatial scale and the typical eutrophic Lake Taihu for one year on a temporal scale. Eutrophication promoted carbon production potential, dissolved carbon concentrations, and carbon release fluxes, especially for CH4. Trophic lake index (TLI) showed positive correlations with the CH4 production potential, dissolved CH4 concentrations, and CH4 release fluxes, and also positive correlations with the CO2 production potential, dissolved CO2 concentrations, and CO2 release fluxes. The space-for-time substitution led to an overestimation for the influence of eutrophication on carbon emissions, especially the further intensification of lake eutrophication. On the spatial scale, the average CH4 production potential, dissolved CH4 concentrations and CH4 release fluxes in eutrophic lakes were 268.6, 0.96 μmol/L, and 587.6 μmol m-2·h-1, respectively, while they were 215.8, 0.79 μmol/L, and 548.6 μmol m-2·h-1 on the temporal scale. Obviously, CH4 and CO2 emissions on the spatial scale were significantly higher than those on the temporal scale in eutrophic lakes. The primary influencing factors were the seasonal changes in the physicochemical environments of lake water, including dissolved oxygen (DO) and temperature. The CH4 and CO2 release fluxes showed negative correlations with DO, while temperature displayed positive correlations, respectively. These results suggest that the effects of DO and temperature on lake carbon emissions should be considered, which may be ignored during the accurate assessment of lake carbon budget via space-for-time substitution in eutrophic lakes.
Collapse
Affiliation(s)
- Muchun Zhou
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China; Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Chuanqiao Zhou
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yu Peng
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| | - Ruoyu Jia
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| | - Wenpeng Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Shuoyuan Liang
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China.
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| |
Collapse
|