1
|
Wang Y, Wang G, Liao F, Bi E, Mao H, Qiao Z, Wang H, Dou M, Wang C, Huang X. Sources and fate of nitrate in the unsaturated zone in an alluvial-lacustrine plain. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137721. [PMID: 40022928 DOI: 10.1016/j.jhazmat.2025.137721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Nitrate pollution in terrestrial and aquatic ecosystems in global agricultural areas poses an environmental concern. However, there is limited understanding of hydrogeological controls on the behavior of nitrogen compounds in unsaturated zones. Here, Self-Organizing Map and multiple isotopes approaches (δ15N-NO3-, δ18O-NO3-, and δ15N-NH4+) were used to investigate the sources, transport and transformation of N-species in the unsaturated zone in an alluvial-lacustrine plain, southeast China. The results revealed significant spatial heterogeneity in soil texture and physicochemical properties with vertically four soil geochemical and N-species zones (high NO₃⁻, high Fe(Ⅲ) and Mn, low ionic, and high NH₄⁺ contents), dominated by agricultural input, soil minerals and redox conditions. Nitrate in the unsaturated zone primarily originated from fertilizers and soil nitrogen. Excess nitrogen fertilizers infiltrated into the soil, where mineralization, nitrification, and dissimilatory nitrate reduction to ammonium (DNRA) acted as key mechanisms for nitrogen transformation. The change in the depositional environment from the plain to the lakeshore area led to nitrification gradual decrease and DNRA significant increase. Consequently, a conceptual model of reactive transport of N-species, influenced by hydrogeologic conditions and biogeochemical processes, was proposed. This study provides a new insight into the nitrate behaviors in unsaturated zone and contributes to groundwater nitrogen management strategies.
Collapse
Affiliation(s)
- Yuqin Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Erping Bi
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Hanxiao Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Minyue Dou
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Chenyu Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Xujuan Huang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
2
|
Liu Y, Zheng T, Guo B, Tao Y, Jiang S, Cao M, Zheng X, Luo J. Reactive transport of different dissolved organic nitrogen components in an unconfined aquifer. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138259. [PMID: 40286668 DOI: 10.1016/j.jhazmat.2025.138259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Dissolved organic nitrogen (DON) is often an overlooked form of nitrogen that can leach from the soil into aquifers. The reactive transport and dispersion of DON in aquifers can contribute to regional nitrogen contamination. The current body of research has primarily focused on the vertical leaching process of DON through the vadose zone. However, these studies have largely ignored the broader reactive transport of DON within aquifers under the influence of groundwater flow. In this study, we investigate the reactive transport of DON under groundwater flow conditions. Utilizing molecular biological technologies, we aim to reveal DON's intrinsic role in the nitrogen cycle within aquifers. Our findings reveal that urea exhibits greater mobility compared to amino acids and proteins. The transport of amino acids and proteins reduces the NO3--N concentrations (44.6 % and 89.6 %) compared to the blank control, while urea leads to the accumulation of NO3--N in groundwater (10.1 %). Amino acid and protein columns show higher relative abundances of Pseudomonas (10.1 % and 7.3 %) and Thermomonas (3.9 % and 5.1 %) with denitrification functions, facilitating denitrification in groundwater. Conversely, the presence of urea increases the relative abundances of Nitrosomonadaceae and Nitrophilus (0.33 % and 0.67 %), posing a potential NO3--N contamination risk. Biotransformation has the greatest effect on protein transport (19.6 %), while adsorption mainly influences amino acid transport (12.4 %). The study provides fundamental insights into the reactive transport of different DON components in aquifers, which holds important implications for regional groundwater environment protection.
Collapse
Affiliation(s)
- Yang Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tianyuan Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Bo Guo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Yiheng Tao
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | - Min Cao
- Qingdao Hydrological Center, Qingdao 266001, China
| | - Xilai Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Xin X, Li L, Cheng J, Wang Y, Lu B, Yang Y, Li L, Wong JWC. Synchronous production of bioethanol and short-chain fatty acids associated with microbial mechanisms via the short-term cultivation of waste molasses inoculated with Aspergillus oryzae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124888. [PMID: 40081030 DOI: 10.1016/j.jenvman.2025.124888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
This study proposes a novel approach for the concurrent production of short-chain fatty acids (SCFAs) and bioethanol, during a 96 h cultivation of waste molasses (with direct air exposure) inoculated with Aspergillus oryzae using vermiculite as a carrier. Results showed that fungal-bacterial symbiotes were formed by enriching acidogens for the bioconversion of SCFAs, such as Enterococcus, Bacillus and Pseudomonas and bioethanol producers, like Klebsiella, Candida tropicalis, Aspergillus oryzae and Barnettozyma californica. The Aspergillus oryzae was found to play various diverse roles during the short-term cultivation process, secreting hydrolase (i.e. α-amylase) for the hydrolysis of waste molasses and contributing to the formation of fungal-bacterial symbiotes. Furthermore, the mechanisms of fungal-bacterial interaction related to simultaneous generation of SCFAs and bioethanol were investigated. Consequently, the cultivation liquid obtained could feasibly be used as a low-cost carbon source for enhancing total nitrogen (TN) removal in the process of low C/N ratio wastewater treatment.
Collapse
Affiliation(s)
- Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Linjuan Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Jian Cheng
- China Northeast Municipal Engineering Design and Research Institute Co., Ltd., Changchun, 130021, PR China
| | - Yanfang Wang
- North China Municipal Engineering Design & Research Institute CO., LTD, Tianjin, 300381, PR China
| | - Boyu Lu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Yue Yang
- School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jonathan W C Wong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| |
Collapse
|
4
|
Cao S, Yin P, Liu C, Hu X, Liu Y, Zhao Y, Guan X, Li Y. Deciphering denitrification drivers in a high‑nitrogen estuary: Insights from stable isotope analysis and microbial molecular techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178987. [PMID: 40022970 DOI: 10.1016/j.scitotenv.2025.178987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Coastal estuaries are increasingly impacted by anthropogenic nitrogen inputs, disrupting nitrogen cycling and posing significant threats to ecosystem health. This study investigates nitrogen sources and transformation processes in the Jiulong River Estuary (JRE), a highly eutrophic subtropical estuary in Southeast China. By analyzing and comparing samples from groundwater, surface water, and sediment, this study reveals distinct nitrogen transformation dynamics across interconnected environmental compartments. A comprehensive framework integrating stable isotope analysis, sediment incubation experiments, and microbial molecular techniques was employed to characterize nitrogen dynamics both regionally and at the sediment-water interface within diverse wetland types. Manure and sewage were identified as the primary nitrogen sources. Salinity emerged as a key regulator of nitrogen transformations, with freshwater wetlands exhibiting the highest denitrification potential, followed by mudflats, aquaculture ponds, and mangroves. Abiotic factors, including hydrological conditions and wetland types, were found to predominantly drive nitrogen transformations, while biotic factors, such as microbial community composition and functional gene abundances, played a secondary but interconnected role under the influence of abiotic drivers. These findings offer valuable insights into nitrogen cycling in estuarine ecosystems and propose a robust framework for mitigating nitrogen pollution and managing eutrophication in coastal regions.
Collapse
Affiliation(s)
- Shengwei Cao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China; School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ping Yin
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266237, China.
| | - Chunlei Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Xiujian Hu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Yaci Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Yuewen Zhao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, Fujian 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei 050061, China.
| |
Collapse
|
5
|
An X, Chen S, Fu J, Yang C, Xiao Y, Zhou Z. Metabolic coupling of aerobic methane oxidation and short-cut nitrification and denitrification for anaerobic effluent treatment in photo-sequencing batch biofilm reactor. BIORESOURCE TECHNOLOGY 2025; 417:131845. [PMID: 39566691 DOI: 10.1016/j.biortech.2024.131845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
This study explored the use of algae to supply oxygen in situ as an alternative to mechanical aeration for anaerobic effluent treatment in a photo-sequencing batch biofilm reactor (PSBBR). By establishing alternating aerobic (dissolved oxygen (DO) > 2 mg /L)/anoxic conditions (<0.5 mg-DO/L) through a 6-h off/6-h on biogas sparging cycle and continuous illumination (1500-3000 lux), the PSBBR achieved a significant ammonia removal rate of 15-25 mg N L-1d-1. This system demonstrated robust partial nitrification and nitrite reduction activities, coupled with aerobic methane oxidation. Metagenomic analysis revealed the enrichment of key microbial groups, including Leptolyngbyaceae, Methylocystis, Nitrosomonas and Hyphomicrobium. The key functional genes of methane (mmo, mdh, gfa, frm and fdh) and nitrogen (amo, hao, narGHI, and napAB) metabolisms were identified, while notably lacking nitrite oxidation genes. In conclusion, this study provides a promising post-treatment approach for anaerobic effluent through integrating biogas utilization with efficient nitrogen removal.
Collapse
Affiliation(s)
- Xiao An
- Department of Environmental Science and Engineering, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Siqi Chen
- Department of Environmental Science and Engineering, College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China.
| | - Jiachen Fu
- Department of Environmental Science and Engineering, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Caiyun Yang
- Department of Environmental Science and Engineering, College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Lab for Innovative Application of Gene Technology, Chongqing 400715, China.
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, College of Engineering, Shantou University, Shantou, Guangdong 515063, China.
| | - Zhongbo Zhou
- Department of Environmental Science and Engineering, College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400715, China; Chongqing Key Lab for Innovative Application of Gene Technology, Chongqing 400715, China.
| |
Collapse
|
6
|
Xu Q, Zhai L, Guo S, Wang C, Yin Y, Min X, Liu H. Using surface runoff to reveal the mechanisms of landscape patterns driving on various forms of nitrogen in non-point source pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176338. [PMID: 39299310 DOI: 10.1016/j.scitotenv.2024.176338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Non-point source (NPS) pollution directly threatens river water quality, constrains sustainable economic development, and poses hazards to human health. Comprehension of the impact factors on NPS pollution is essential for scientific river water quality management. Despite the landscape pattern being considered to have a significant impact on NPS pollution, the driving mechanism of landscape patterns on NPS pollution remains unclear. Therefore, this study coupled multi-models including the Soil and Water Assessment Tool (SWAT), Random Forest, and Partial Least Squares Structural Equation Modeling (PLS-SEM) to construct the connection between landscape patterns, NPS pollution, and surface runoff. The results suggested that increased runoff during the wet season enhances the link between landscape patterns and NPS pollution, and the explained NPS pollution variation by landscape pattern increased from 59.6 % (dry season) to 84.9 % (wet season). Furthermore, from the impact pathways, we find that the sink landscape pattern can significantly and indirectly influence NPS pollution by regulating surface runoff during the wet season (0.301*). Meanwhile, the sink and source landscape patterns significantly and directly impact NPS pollution during different seasons. Moreover, we further find that the percentage of paddy land use (Pad_PLAND) and grassland patch density (Gra_PD) metrics can significantly predict the dissolved total nitrogen (DTN) and nitrate nitrogen (NO3--N) variation. Thus, controlling the runoff migration process by guiding the rational evolution of watershed landscape patterns is an important development direction for watershed NPS pollution management.
Collapse
Affiliation(s)
- Qiyu Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Limei Zhai
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shufang Guo
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650201, China
| | - Chenyang Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinghua Yin
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyue Min
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongbin Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Zhang S, Huang X, Dong W, Wang H, Hu L, Zhou G, Zheng Z. Potential effects of Cu 2+ stress on nitrogen removal performance, microbial characteristics, and metabolism pathways of biofilm reactor. ENVIRONMENTAL RESEARCH 2024; 259:119541. [PMID: 38960353 DOI: 10.1016/j.envres.2024.119541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Sequencing batch biofilm reactors (SBBR) were utilized to investigate the impact of Cu2+ on nitrogen (N) removal and microbial characteristics. The result indicated that the low concentration of Cu2+ (0.5 mg L-1) facilitated the removal of ammonia nitrogen (NH4+-N), total nitrogen (TN), nitrate nitrogen (NO3--N), and chemical oxygen demand (COD). In comparison to the average effluent concentration of the control group, the average effluent concentrations of NH4+-N, NO3--N, COD, and TN were found to decrease by 40.53%, 17.02%, 10.73%, and 15.86%, respectively. Conversely, the high concentration of Cu2+ (5 mg L-1) resulted in an increase of 94.27%, 55.47%, 22.22%, and 14.23% in the aforementioned parameters, compared to the control group. Low concentrations of Cu2+ increased the abundance of nitrifying bacteria (Rhodanobacter, unclassified-o-Sacharimonadales), denitrifying bacteria (Thermomonas, Comamonas), denitrification-associated genes (hao, nosZ, norC, nffA, nirB, nick, and nifD), and heavy-metal-resistant genes related to Cu2+ (pcoB, cutM, cutC, pcoA, copZ) to promote nitrification and denitrification. Conversely, high concentration Cu2+ hindered the interspecies relationship among denitrifying bacteria genera, nitrifying bacteria genera, and other genera, reducing denitrification and nitrification efficiency. Cu2+ involved in the N and tricarboxylic acid (TCA) cycles, as evidenced by changes in the abundance of key enzymes, such as (EC:1.7.99.1), (EC:1.7.2.4), and (EC:1.1.1.42), which initially increased and then decreased with varying concentrations of Cu2+. Conversely, the abundance of EC1.7.2.1, associated with the accumulation of nitrite nitrogen (NO2--N), gradually declined. These findings provided insights into the impact of Cu2+ on biological N removal.
Collapse
Affiliation(s)
- Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hongjie Wang
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangshan Hu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Guorun Zhou
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhihao Zheng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
8
|
Hao Y, Zheng T, Zheng X, Liu L, Jiang S, Cao M, Luo J. The impact of dissolved organic nitrogen (DON) retention in the vadose zone on nitrogen leaching losses. CHEMOSPHERE 2024; 366:143449. [PMID: 39362379 DOI: 10.1016/j.chemosphere.2024.143449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Leaching of dissolved organic nitrogen (DON) is a significant pathway for nitrogen (N) loss in agricultural ecosystems. The excessive application of N for enhanceing agricultural productivity often results in the leaching of N into groundwater. Yet not well understood, the extent of retention in the vadose zone has critical implications for risk management and remediation strategies. This study aims to advance simulation techniques for modelling the transport process of reactive DON within a heterogeneous vadose zone. Through a combination of laboratory experiments and numerical simulations, the study firstly examines the extent of DON retention in the vadose zone and quantitatively analyse groundwater contamination risk from this kind of accumulation. Our findings indicate that heavy N fertilizer application and high-intensity rainfall events led to elevated contents of DON in the vadose zone and increased DON leaching fluxes into groundwater. Besides, intensifier rainfall reduced the N storage more quickly in scenarios devoid of DON application with higher mineralization rate, while DON slowly mineralized to other forms, largely accumulated in the top layer and migrated deeper with intensifier rainfall after input of urea. In our scenarios, DON accounted for a substantial portion (33-68%) of the total dissolved nitrogen (TDN) leaching fluxes, with exogenous DON content contributing significantly (25-85%) to the overall DON leaching into the aquifer. These results underscore the need for effective strategies to mitigate groundwater contamination risks associated with agricultural N use.
Collapse
Affiliation(s)
- Yujie Hao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ocean University of China, Qingdao, 266100, China
| | - Tianyuan Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ocean University of China, Qingdao, 266100, China.
| | - Xilai Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ocean University of China, Qingdao, 266100, China
| | - Lecheng Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ocean University of China, Qingdao, 266100, China
| | - Shiqiang Jiang
- Qingdao Hydrological Center, Qingdao, 266101, Shandong, China
| | - Min Cao
- Qingdao Hydrological Center, Qingdao, 266101, Shandong, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
9
|
Ding H, Gao H, Zhu M, Yu M, Sun Y, Zheng M, Su J, Xi B. Spectral and molecular insights into the characteristics of dissolved organic matter in nitrate-contaminated groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124202. [PMID: 38788994 DOI: 10.1016/j.envpol.2024.124202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/11/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The characteristics of dissolved organic matter (DOM) serve as indicators of nitrate pollution in groundwater. However, the specific DOM components associated with nitrate in groundwater systems remain unclear. In this study, dual isotopes of nitrate, three-dimensional Excitation emission matrices (EEMs) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were utilized to uncover the sources of nitrate and their associations with DOM characteristics. The predominant nitrate in the targeted aquifer was derived from soil organic nitrogen (mean 46.0%) and manure &sewage (mean 34.3%). The DOM in nitrate-contaminated groundwater (nitrate-nitrogen >20 mg/L) exhibited evident exogenous characteristics, with a bioavailable content 2.58 times greater than that of uncontaminated groundwater. Regarding the molecular characteristics, DOM molecules characterized by CHO + 3N, featuring lower molecular weights and H/C ratios, indicated potential for mineralization, while CHONS formulas indicated the exogenous features, providing the potential for accurate traceability. These findings provided insights at the molecular level into the characterization of DOM in nitrate-contaminated groundwater and offer scientific guidance for decision-making regarding the remediation of groundwater nitrate pollution.
Collapse
Affiliation(s)
- Hongyu Ding
- College of Water Science, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huan Gao
- CCCC Water Transportation Consultants Co., Ltd, Beijing, 100010, China
| | - Mingtan Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Minda Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mingxia Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- College of Water Science, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
10
|
Lee HC, Chen SC, Sheu YT, Yao CL, Lo KH, Kao CM. Bioremediation of trichloroethylene-contaminated groundwater using green carbon-releasing substrate with pH control capability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123768. [PMID: 38493868 DOI: 10.1016/j.envpol.2024.123768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/01/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
In this research, a sustainable substrate, termed green and long-lasting substrate (GLS), featuring a blend of emulsified substrate (ES) and modified rice husk ash (m-RHA) was devised. The primary objective was to facilitate the bioremediation of groundwater contaminated with trichloroethylene (TCE) using innovative GLS for slow carbon release and pH control. The GLS was concocted by homogenizing a mixture of soybean oil, surfactants (Simple Green™ and soya lecithin), and m-RHA, ensuring a gradual release of carbon sources. The hydrothermal synthesis was applied for the production of m-RHA production. The analyses demonstrate that m-RHA were uniform sphere-shape granules with diameters in micro-scale ranges. Results from the microcosm study show that approximately 83% of TCE could be removed (initial TCE concentration = 7.6 mg/L) with GLS supplement after 60 days of operation. Compared to other substrates without RHA addition, higher TCE removal efficiency was obtained, and higher Dehalococcoides sp. (DHC) population and hydA gene (hydrogen-producing gene) copy number were also detected in microcosms with GLS addition. Higher hydrogen concentrations enhanced the DHC growth, which corresponded to the increased DHC populations. The addition of the GLS could provide alkalinity at the initial stage to neutralize the acidified groundwater caused by the produced organic acids after substrate biodegradation, which was advantageous to DHC growth and TCE dechlorination. The addition of m-RHA reached an increased TCE removal efficiency, which was due to the fact that the m-RHA had the zeolite-like structure with a higher surface area and lower granular diameter, and thus, it resulted in a more effective initial adsorption effect. Therefore, a significant amount of TCE could be adsorbed onto the surface of m-RHA, which caused a rapid TCE removal through adsorption. The carbon substrates released from m-RHA could then enhance the subsequent dechlorination. The developed GLS is an environmentally-friendly and green substrate.
Collapse
Affiliation(s)
- Hsin-Chia Lee
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Chung-Li City, Taoyuan, Taiwan
| | - Yih-Terng Sheu
- General Education Center, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Hung Lo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Feng M, Lin Y, He ZY, Hu HW, Jin S, Liu J, Wan S, Cheng Y, He JZ. Higher stochasticity in comammox Nitrospira community assembly in upland soils than the adjacent paddy soils at a regional scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171227. [PMID: 38402820 DOI: 10.1016/j.scitotenv.2024.171227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Understanding the assembly mechanisms of microbial communities, particularly comammox Nitrospira, in agroecosystems is crucial for sustainable agriculture. However, the large-scale distribution and assembly processes of comammox Nitrospira in agricultural soils remain largely elusive. We investigated comammox Nitrospira abundance, community structure, and assembly processes in 16 paired upland peanuts and water-logged paddy soils in south China. Higher abundance, richness, and network complexity of comammox Nitrospira were observed in upland soils than in paddy soils, indicating a preference for upland soils over paddy soils among comammox Nitrospira taxa in agricultural environments. Clade A.2.1 and clade A.1 were the predominant comammox Nitrospira taxa in upland and paddy soils, respectively. Soil pH was the most crucial factor shaping comammox Nitrospira community structure. Stochastic processes were found to predominantly drive comammox Nitrospira community assembly in both upland and paddy soils, with deterministic processes playing a more important role in paddy soils than in upland soils. Overall, our findings demonstrate the higher stochasticity of comammox Nitrospira in upland soils than in the adjacent paddy soils, which may have implications for autotrophic nitrification in acidic agricultural soils.
Collapse
Affiliation(s)
- Mengmeng Feng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China
| | - Yongxin Lin
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China.
| | - Zi-Yang He
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia
| | - Shengsheng Jin
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Song Wan
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China
| | - Yuheng Cheng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China
| | - Ji-Zheng He
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China; School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
12
|
Fang Y, Chen C, Cui B, Zhou D. Nanoscale zero-valent iron alleviate antibiotic resistance risk during managed aquifer recharge (MAR) by regulating denitrifying bacterial network. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133238. [PMID: 38134694 DOI: 10.1016/j.jhazmat.2023.133238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
The frequent occurrence of antibiotics in reclaimed water is concerning, in the case of managed aquifer recharge (MAR), it inevitably hinders further water purification and accelerates the evolutionary resistance in indigenous bacteria. In this study, we constructed two column reactors and nanoscale zero-valent iron (nZVI) amendment was applied for its effects on water quality variation, microbial community succession, and antibiotic resistance genes (ARGs) dissemination, deciphered the underlying mechanism of resistance risk reduction. Results showed that nZVI was oxidized to iron oxides in the sediment column, and total effluent iron concentration was within permissible limits. nZVI enhanced NO3--N removal by 15.5% through enriching denitrifying bacteria and genes, whereas made no effects on oxacillin (OXA) removal. In addition, nZVI exhibited a pivotal impact on ARGs and plasmids decreasing. Network analysis elucidated that the diversity and richness of ARG host declined with nZVI amendment. Denitrifying bacteria play a key role in suppressing horizontal gene transfer (HGT). The underlying mechanisms of inhibited HGT included the downregulated SOS response, the inhibited Type-Ⅳ secretion system and the weakened driving force. This study afforded vital insights into ARG spread control, providing a reference for future applications of nZVI in MAR.
Collapse
Affiliation(s)
- Yuanping Fang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Congli Chen
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Bin Cui
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
13
|
Gao S, Zheng T, Zhang B, Fang Y, Zheng X. Combined effects of aquifer heterogeneity and subsurface dam on nitrate contamination in coastal aquifers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119740. [PMID: 38091734 DOI: 10.1016/j.jenvman.2023.119740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
Subsurface dams are effective for seawater intrusion mitigation, yet they can cause upstream nitrate accumulation. This research examines the interplay between subsurface dam construction and aquifer layering on nitrate pollution in coastal settings, employing numerical models to simulate density-driven flow and reactive transport. The study reveals that while subsurface dams are adept at curbing seawater intrusion, they inadvertently broaden the nitrate accumulation zone, especially when a low-K layer is present. Heterogeneous aquifers see more pronounced nitrate accumulation from subsurface dams. This effect is pronounced as it influences dissolved organic carbon dynamics, with a notable retreat inland correlating with the expansion of the nitrate pollution plume. A critical finding is that controlling seawater intrusion via dam height adjustment within the Effective Damming Region effectively reduces nitrate levels and bolsters freshwater output. However, exceeding the critical threshold-where the dam surpasses the low-K layer's bottom-results in a substantial shift in nitrate concentration, underscoring the need for precise dam height calibration to avoid aggravating nitrate pollution. This study's innovative contribution lies in its quantification of the nuanced effects of subsurface dams in stratified aquifers, providing an empirical basis for dam design that considers the layered complexities of coastal aquifers. The insights offer a valuable framework for managing nitrate contamination, thus informing sustainable coastal groundwater management and protection strategies.
Collapse
Affiliation(s)
- Shaobo Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ocean University of China, Qingdao, 266100, China
| | - Tianyuan Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ocean University of China, Qingdao, 266100, China.
| | - Bo Zhang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yunhai Fang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xilai Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
14
|
Wang L, Li M. Review of soil dissolved organic nitrogen cycling: Implication for groundwater nitrogen contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132713. [PMID: 37813032 DOI: 10.1016/j.jhazmat.2023.132713] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/08/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Dissolved organic nitrogen (DON) in groundwater is derived from soil DON transformation and migration processes, which has been considered an emerging nitrogen (N) pollutant. However, due to the limitations of the analytical methods and the complexity of the involved transformation process, the role of DON in soil N cycling remains unclear. Therefore, this review aims to critically examine previous related studies on DON and highlight the knowledge gaps related to DON transformations and molecular characteristics in soils. In addition, the DON distributions and key transformation processes, as well as their influencing factors, were summarized. About 60% of DON components have not been determined due to the limited analytical techniques and methodologies. The depolymerization process of polymers into DON is the rate-limiting step of N mineralization. Furthermore, DON leaching amounts accounted for 7-1500% of soil nitrate (NO3--N) amounts, becoming the dominate pathway of N loss. Further studies are required to provide accurate information on DON compositions and transformation mechanisms, as well as their influencing factors, in soils. The suggested studies can provide further insights into the role of DON in soil N cycling, thereby controlling effectively groundwater N contamination.
Collapse
Affiliation(s)
- Leyun Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Wang D, Li P, Mu D, Liu W, Chen Y, Fida M. Unveiling the biogeochemical mechanism of nitrate in the vadose zone-groundwater system: Insights from integrated microbiology, isotope techniques, and hydrogeochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167481. [PMID: 37788773 DOI: 10.1016/j.scitotenv.2023.167481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Clarifying the biogeochemical mechanism of nitrate (NO3-) in the vadose zone-groundwater system, particularly in agricultural contexts, is crucial for mitigating groundwater NO3- pollution. However, comprehensive studies on the impacts of changes in chemical indicators and microbial communities on NO3- are still lacking. This paper aims to address this gap by employing hydrogeochemistry, stable isotopes, and microbial techniques to assess the NO3- biogeochemical processes in the vadose zone-groundwater system. The findings suggested that NO3- in upper soil layers was primarily influenced by plant root absorption, assimilation, and nitrification processes. The oxygen contents gradually decreased with the nitrification process, resulting in the occurrence of the denitrification. However, denitrification predominantly occurred in the 60-80 cm soil layer in the study area. The limited thickness of the denitrification layer results in less NO3- consumption, leading to increased NO3- leaching into groundwater. Hydrochemical and isotopic characteristics further indicated that groundwater NO3- concentrations were mainly controlled by nitrification, followed by denitrification and mixing processes. The 16S rRNA sequencing analysis revealed great influences of soil sampling depths and groundwater NO3- concentrations on the microbial community structure. Additionally, the PICRUSt2-based prediction results demonstrated a stronger potential for dissimilatory reduction of NO3- to ammonium (DNRA) in both soil and groundwater compared to the other processes, potentially due to the widespread presence of the nrfH functional genes. However, the chemical indicators and isotopes used in this study did not support the occurrence of DNRA process in the vadose zone-groundwater system. This finding highlights the importance of an integrated approach combining microbiological, isotopic, and hydrogeochemical data to comprehensive understanding biogeochemical processes. The study developed a conceptual model elucidating the NO3- biogeochemical processes in the vadose zone-groundwater system within an agricultural area, contributing to enhanced comprehension and advancement of sustainable management practices for groundwater nitrogen.
Collapse
Affiliation(s)
- Dan Wang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China.
| | - Dawei Mu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Weichao Liu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Yinfu Chen
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Misbah Fida
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| |
Collapse
|
16
|
Jia L, Xin J, Wu H, Gong S, Wu H, Zhang Z. Enhancing nitrate attenuation in groundwater via selectively applying surface agricultural practices: A novel and sustainable strategy for non-point source pollution mitigation. WATER RESEARCH 2023; 239:120052. [PMID: 37178664 DOI: 10.1016/j.watres.2023.120052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Non-point nitrate pollution in groundwater has been accelerated by agricultural development, but sustainable nitrogen removal is a challenge because of its wide distribution and negative side effects. Surface agricultural practices (SAPs), which are demonstrably effective in driving the downward infiltration of dissolved organic carbon (DOC), have not been well explored for their potential to enhance nitrate attenuation in groundwater. Therefore, a combination of soil column and groundwater incubation experiments was performed to investigate the carbon and nitrogen responses to different SAPs (manure fertilization, lucerne planting, and straw return). The soil column experiment showed that SAPs promoted DOC and reduced nitrate leaching into groundwater, and straw treatment witnessed the highest DOC leaching flux (252.71 g m-2 yr-1) and lowest nitrate leaching flux (9.51 g m-2 yr-1). The groundwater incubation experiment showed that leachates from the straw treatment displayed the best denitrification-enhancement performance, with the highest NO3--N reduction efficiency (92.93%) and rate (1.627 mg/day), N2 selectivity (99.78%), and net nitrogen removal (0.09 mg). Furthermore, Fourier transform ion cyclotron resonance mass spectrometry confirmed that CHOS molecules with lower double bond equivalents (0-5) and larger carbon numbers (10-15) were more accessible to denitrifiers. This study provides a new path for the sustainable control of non-point source nitrate pollution.
Collapse
Affiliation(s)
- Linna Jia
- Key Lab of Marine Environment and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jia Xin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Han Wu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuo Gong
- Key Lab of Marine Environment and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Haoran Wu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiyuan Zhang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
17
|
Yu L, Ju CJ, Jing KY, Wang ZY, Niyazi S, Wang Q. The role of anthraquinone-2-sulfonate on intra/extracellular electron transfer of anaerobic nitrate reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117455. [PMID: 36758409 DOI: 10.1016/j.jenvman.2023.117455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
To improve the electron (e-) transfer efficiency, exogenous redox mediators (RMs) were usually employed to enhance the denitrification efficiency due to the electron shuttling. Previous studies were mainly focused on how to improve the extracellular electron transfer (EET) by exogenous RMs. However, the intracellular electron transfer (IET), another crucial e- transfer pathway, of biological denitrification was scarcely reported, especially for the relationship between the denitrification and IET. In this study, Coenzyme Q, Complexes I, II and III were determined as the core components in the IET chain of denitrification by using four specific respiration chain inhibitors (RCIs). Anthraquinone-2-sulfonate (AQS) partially recovered the IET of denitrification from NO3--N to N2 gas when the RCIs were added. Specifically, the generations of N2 gas were improved by 9.68%-18.25% in the experiments with RCIs and AQS, comparing to that with RCIs. nrfA gene was not detected by reverse transcription-polymerase chain reaction, suggesting that Klebsiella oxytoca strain could not conduct dissimilatory nitrate reduction to ammonium. Nitrate assimilation was considered as the main NH4+-N formation way of K. oxytoca strain. The two e- transfer pathways of denitrification were constructed and the roles of AQS on the IET and EET of denitrification were specifically discussed. The results of this study provided a better understanding of the e- transfer pathways of denitrification, and suggested a potential practical use of exogenous RM on bio-treatment of nitrate-containing wastewater.
Collapse
Affiliation(s)
- Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Cheng-Jia Ju
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai-Yan Jing
- College of Ecology and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zi-Yang Wang
- Soil Environment Research Institute, Jiangsu Provincial Academy of Environmental Science, 210003, Nanjing, China
| | - Shareen Niyazi
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Quan Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
18
|
Liu S, Hao Y, Wang H, Zheng X, Yu X, Meng X, Qiu Y, Li S, Zheng T. Bidirectional potential effects of DON transformation in vadose zones on groundwater nitrate contamination: Different contributions to nitrification and denitrification. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130976. [PMID: 36860052 DOI: 10.1016/j.jhazmat.2023.130976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The main cause of groundwater nitrate contamination is the continual downward migration of dissolved nitrogen (N) in vadose zone with leachate. In recent years it has been found that dissolved organic N (DON) rise to forefront due to its great migration capacity and environmental effects. However, it remains unknown how the transformation behaviors of DONs with different properties in vadose zone profile may impact N forms distribution and groundwater nitrate contamination. To address the issue, we conducted a series of 60-day microcosm incubation experiments to investigate the effects of various DONs transformation behaviors on the distribution of N forms, microbial communities, and functional genes. The results revealed that urea and amino acids mineralized immediately after substrates addition. By contrast, amino sugars and proteins caused less dissolved N throughout entire incubation period. The transformation behaviors could substantially alter the microbial communities. Moreover, we discovered that amino sugars remarkably increased the absolute abundances of denitrification function genes. These results delineated that DONs with unique characteristics (such as amino sugar) promoted different N geochemical processes in distinct ways: different contributions to nitrification and denitrification. This can provide new insights for nitrate non-point source pollution control in groundwater.
Collapse
Affiliation(s)
- Shixuan Liu
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yujie Hao
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huan Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xilai Zheng
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xiaoping Yu
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianyu Meng
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yingying Qiu
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shiji Li
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tianyuan Zheng
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
19
|
Xiong G, Zhu X, Wu J, Liu M, Yang Y, Zeng X. Seawater intrusion alters nitrogen cycling patterns through hydrodynamic behavior and biochemical reactions: Based on Bayesian isotope mixing model and microbial functional network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161368. [PMID: 36621512 DOI: 10.1016/j.scitotenv.2022.161368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/07/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Seawater intrusion is a global coastal environmental issue of great concern and significantly impacts the regional biogeochemical environment and material cycles, including nitrogen cycling. To reveal the mechanism of seawater intrusion altering nitrogen cycling patterns through hydrodynamic behavior and biochemical reactions, the Bayesian mixing model (δ15N-NO3- and δ18O-NO3-) and 16S rDNA gene amplicon sequencing are used to establish nitrogen cycling pathways and microbial functional network. The results show that the nitrate in the coastal groundwater is from manure and septic waste (M&S, over 44 %), soil organic nitrogen (SON, over 20 %), and nitrogen fertilizer (FN, over 16 %). The hydrological interaction has promoted the coupling between material cycling and microbial community in the coastal groundwater systems. Among them, precipitation infiltration has caused the gradual decrease of specific microbes along the flow direction, such as Lactobacillus, Acinetobacter, Bifidobacterium, etc. And seawater intrusion has caused the mutations of specific microbes (Planktomarina, Clade_Ia, Wenyingzhuangia, Glaciecola, etc.) and convergence of microbial community at the salt-freshwater interface in the aquifer. In the coastal intruded aquifer systems, the nitrogen cycling pattern can be divided into oxidation and reduction processes. The oxidation process involves the enhancement of nitrification while the weakening of denitrification and anammox with the increase of aquifer depth. The reduction process consists of the enhancement of denitrification and anammox while the erosion of nitrification and ammonification with increased seawater intrusion. In addition, seawater intrusion can mitigate nitrate contamination by promoting denitrification and anammox in coastal areas.
Collapse
Affiliation(s)
- Guiyao Xiong
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaobin Zhu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Mengwen Liu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Yun Yang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
| | - Xiankui Zeng
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Zhang L, Ali A, Su J, Wang Z, Huang T, Zhang R, Liu Y. Microencapsulated reactor for simultaneous removal of calcium, fluoride and phenol using microbially induced calcium precipitation: Mechanism and functional characterization. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130704. [PMID: 36603427 DOI: 10.1016/j.jhazmat.2022.130704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Fluoride ions (F-) and phenol in groundwater have become a great hurdle to the pursuit of a healthy drinking water source. This study established a microencapsulated immobilization reactor with Aquabacterium sp. CZ3 for the simultaneous removal of nitrate (NO3--N), calcium (Ca2+), F-, and phenol from groundwater with 100%, 67.84%, 88.67%, and 100% removal efficiencies, respectively. The three-dimensional mesh structure of microcapsules facilitated the transport and metabolism of substances, while their synergistic effect with bacteria promoted the removal of contaminants. F- was removed by co-precipitation to generate Ca5(PO4)3F and CaF2 and adsorption. On one hand, the phenol toxicity promoted the production of extracellular polymers and improved the tolerance of bacteria; on the other hand, the degradation of phenol provided a carbon source for bacteria and promoted the denitrification. The development of microencapsulated immobilized reactor provided a clear mechanism for phenol and F- removal under the microbially induced calcium precipitation (MICP) technique, while providing a valuable solution for the treatment of complex groundwater resources.
Collapse
Affiliation(s)
- Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
21
|
Xing W, Zhang Z, Zhang X, Liu J, Li J, Lin J, Yao H. Mainstream partial Anammox for improving nitrogen removal from municipal wastewater after organic recovery via magnetic separation. BIORESOURCE TECHNOLOGY 2022; 361:127726. [PMID: 35926560 DOI: 10.1016/j.biortech.2022.127726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Total nitrogen (TN) removal from municipal wastewater after organic recovery is challenging because of the low ratio of chemical oxygen demand (COD) to TN. Anaerobic ammonium oxidation (Anammox) is promising because it has no organic requirement, but its performance in treating effluents following COD captured remains unclear. This study used mainstream partial Anammox to remove nitrogen from effluent following magnetic separation within a continuous-flow anoxic-oxic reactor. Compared with traditional nitrification and denitrification, partial Anammox increased TN removal efficiency by 15.0% and contributed 23.6% of TN removal. Quantitative polymerase chain reaction revealed that the copy number of the Anammox gene (hzsB) increased substantially, while those of the nitrite oxidation (nxrA) and denitrification (narG and nirS) genes decreased. High-throughput sequencing identified Candidatus Brocadia as the dominant genus of anaerobic ammonium-oxidizing bacteria. These findings demonstrate the effectiveness of mainstream partial Anammox for treating COD-captured effluents and its potential in municipal wastewater treatment.
Collapse
Affiliation(s)
- Wei Xing
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Zexi Zhang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Xiaoman Zhang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Jie Liu
- Beijing Capital Eco-Environment Protection Group Co., Ltd., Beijing 100044, PR China
| | - Jia Li
- Beijing Capital Eco-Environment Protection Group Co., Ltd., Beijing 100044, PR China
| | - Jia Lin
- Beijing Capital Eco-Environment Protection Group Co., Ltd., Beijing 100044, PR China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China.
| |
Collapse
|
22
|
Mo X, Peng H, Xin J, Wang S. Analysis of urea nitrogen leaching under high-intensity rainfall using HYDRUS-1D. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114900. [PMID: 35313149 DOI: 10.1016/j.jenvman.2022.114900] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The leaching of nitrogen in farmland could lead to groundwater nitrogen pollution, while precipitation is the driving factor. Nevertheless, the influences of extreme precipitation on soil organic nitrogen leaching, such as urea, is not clear. In this study, we used soil column experimental data to construct a nitrogen migration and transformation model. The constructed model was applied to unsaturated zones in farmlands in the Dagu River Basin of China. Three rainfall scenarios, namely rainstorms, heavy rainstorms, and extreme rainstorms, were simulated to analyze the variation in urea nitrogen leaching to groundwater. As the rainfall intensity increased, the quantity of urea nitrogen leaching increased from 0.04% to 18.09%. The cumulative urea nitrogen leaching flux is related to the initial soil moisture content. The time interval between fertilization inversely influenced the urea nitrogen leaching flux. Applying urea-based fertilizers shortly before high-intensity rainfall significantly increases the soil-crop system urea leaching loss and decreases crop nitrogen utilization. These findings imply that urea leaching under extreme rainstorms should not be ignored, and based on weather forecasting, fertilizer application in farmland should be avoided before high-intensity rainfall.
Collapse
Affiliation(s)
- Xiaoyu Mo
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Hui Peng
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jia Xin
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shuo Wang
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|