1
|
Li J, Chen Y, Qi J, Zuo X, Meng F. Characterization of EPS subfractions from a mixed culture predominated by partial-denitrification functional bacteria. WATER RESEARCH X 2024; 24:100250. [PMID: 39281024 PMCID: PMC11402163 DOI: 10.1016/j.wroa.2024.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
Extracellular polymeric substances (EPS) play a crucial role in the aggregation of partial denitrification (PD) consortia, as EPS is closely linked to bioreactor performance. However, the structural and compositional properties of EPS from PD consortia have not yet been investigated. In this study, photometric measurements indicated that PD consortia contained significantly more EPS (168.81 ± 2.10 mg/g VSS) compared to conventional activated sludge (79.79 mg/g VSS). The EPS of PD consortia exhibited a significant predominance of proteins over polysaccharides, with a protein/polysaccharide ratio of 1.43 ± 0.10. FTIR analysis revealed that the EPS of PD consortia contained fewer hydrophilic functional groups, particularly carboxyl and carbonyl groups, indicating a high aggregation potential. The content comparison of EPS and functional groups across three stratified EPS subfractions from PD consortia consistently followed the sequence: TB-EPS > LB-EPS > S-EPS. XPS results corroborated the FTIR findings and the protein/polysaccharide ratio determined by photometric measurements, all of which suggested that the EPS of PD consortia exhibited a higher abundance of hydrophobic functional groups. However, the higher α-helix/(β-sheet + random coil) ratio (0.99) suggested that the proteins in PD consortia had a compact structure, making inner hydrophobic groups difficult to expose. This compact protein structure could limit aggregation among bacterial cells, indicating the need for process optimization to enhance sludge aggregation in PD-related processes. Overall, understanding the aggregation characteristics of PD consortia could improve the application of PD-based processes.
Collapse
Affiliation(s)
- Jiapeng Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Yanxi Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Ji Qi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Xiaotian Zuo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| |
Collapse
|
2
|
Gao M, Guo B, Zou X, Guo H, Yao Y, Chen Y, Guo J, Liu Y. Mechanisms of anammox granular sludge reactor effluent as biostimulant: Shaping microenvironment for anammox metabolism. BIORESOURCE TECHNOLOGY 2024; 406:130962. [PMID: 38876278 DOI: 10.1016/j.biortech.2024.130962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Effluent from anammox granular sludge (AnGS) bioreactor contains microbes and microbial products. This study explored mechanisms of utilizing AnGS-effluent as biostimulant for anammox process enhancement. Compared with no AnGS-effluent supplemented control reactor, 5.0 and 1.3 times higher ammonium nitrogen and total inorganic nitrogen removal rates, respectively were obtained with continuous AnGS-effluent supplementation after 98 days' operation. Anammox bacteria from Candidatus Brocadia accounted for 0.1 % (DNA level) and 1.3 %-1.5 % (RNA level) in control reactor, and 2.9 % (DNA level) and 54.5 %-55.4 % (RNA level) in the AnGS-effluent-fed reactor. Influent microbial immigration evaluation showed that bacterial immigration via AnGS-effluent supplementation was not the main contributor to active anammox community development. Amino acids biosynthesis, B-vitamins and coenzymes metabolism related pathways were facilitated by AnGS-effluent supplementation. AnGS-effluent supplementation aided anammox metabolic activity by shaping microenvironment and microbial interactions. This study provides insights into enhancing anammox bacterial metabolism with AnGS-effluent microbial products as biostimulant.
Collapse
Affiliation(s)
- Mengjiao Gao
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Bing Guo
- Centre for Environmental Health and Engineering (CEHE), School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane QLD 4001, Queensland, Australia
| | - Hengbo Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yiduo Yao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Youpeng Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane QLD 4001, Queensland, Australia.
| |
Collapse
|
3
|
Du Z, Lu B, Li D, Chai X. Strengthening nitrogen removal of rural wastewater treatment in humus biochemical system under low dissolved oxygen conditions: Sludge and microbial characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121762. [PMID: 39067308 DOI: 10.1016/j.jenvman.2024.121762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
To achieve efficient and cost-effective treatment for the rural wastewater, a novel humus biochemical system (HBS) process derived from humus bio-functional material was proposed to treat rural wastewater under low dissolved oxygen (DO) conditions, and the operational performance, sludge characteristics, and microbial community in HBS were systematically investigated in this study. The results indicated that the HBS reactor could be operated stably under low DO levels of 0.2-0.8 mg/L, and maintained high removal efficiencies of 96.4%, 96.0%, and 88.2% for chemical oxygen demand, ammonia nitrogen, and total nitrogen, with corresponding effluent concentrations of 11.0, 1.7, and 5.1 mg/L, respectively. The sludge produced from HBS was characterized by relatively large particle size, complex structural morphology, and abundant humic substances, which favorably improved the system stability. Illumina sequencing demonstrated that HBS reactor possessed high microbial abundance and diversity and was enriched with plenty of nitrifying and denitrifying bacteria, which synergistically intensified the whole biological nitrogen removal process in this system. The study presented the feasibility and adaptability of HBS for energy-efficient rural wastewater treatment.
Collapse
Affiliation(s)
- Zhengliang Du
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bin Lu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Dong Li
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaoli Chai
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Jiang C, Zhang L, Chi Y, Xu S, Xie Y, Yang D, Qian Y, Chen F, Zhang W, Wang D, Tian Z, Zhang S, Li YY, Zhuang X. Rapid start-up of an innovative pilot-scale staged PN/A continuous process for enhanced nitrogen removal from mature landfill leachate via robust NOB elimination and efficient biomass retention. WATER RESEARCH 2024; 249:120949. [PMID: 38070348 DOI: 10.1016/j.watres.2023.120949] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The start-up and stable operation of partial nitritation-anammox (PN/A) treatment of mature landfill leachate (MLL) still face challenges. This study developed an innovative staged pilot-scale PN/A system to enhance nitrogen removal from MLL. The staged process included a PN unit, an anammox upflow enhanced internal circulation biofilm (UEICB) reactor, and a post-biofilm unit. Rapid start-up of the continuous flow PN process (full-concentration MLL) was achieved within 35 days by controlling dissolved oxygen and leveraging free ammonia and free nitrous acid to selectively suppress nitrite-oxidizing bacteria (NOB). The UEICB was equipped with an annular flow agitator combined with the enhanced internal circulation device of the guide tube, which achieved an efficient enrichment of Candidatus Kuenenia in the biofilm (relative abundance of 33.4 %). The nitrogen removal alliance formed by the salt-tolerant anammox bacterium (Candidatus Kuenenia) and denitrifying bacteria (unclassified SBR1031 and Denitratisoma) achieved efficient nitrogen removal of UEICB (total nitrogen removal percentage: 90.8 %) and at the same time effective treatment of the refractory organic matter (ROM). The dual membrane process of UEICB fixed biofilm combined with post-biofilm is effective in sludge retention, and can stably control the effluent suspended solids (SS) at a level of less than 5 mg/L. The post-biofilm unit ensured that effluent total nitrogen (TN) remained below the 40 mg/L discharge standard (98.5 % removal efficiency). Compared with conventional nitrification-denitrification systems, the staged PN/A process substantially reduced oxygen consumption, sludge production, CO2 emissions and carbon consumption by 22.8 %, 67.1 %, 87.1 % and 87.1 %, respectively. The 195-day stable operation marks the effective implementation of the innovative pilot-scale PN/A process in treating actual MLL. This study provides insights into strategies for rapid start-up, robust NOB suppression, and anammox biomass retention to advance the application of PN/A in high-ammonia low-carbon wastewater.
Collapse
Affiliation(s)
- Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, China Key Laboratory of Environmental Biotechnology, Yiwu 322000, China
| | - Liang Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongzhi Chi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, China Key Laboratory of Environmental Biotechnology, Yiwu 322000, China.
| | - Yawen Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongmin Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunzhi Qian
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
| | - Fuqiang Chen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Weijun Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongsheng Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, China Key Laboratory of Environmental Biotechnology, Yiwu 322000, China
| | - Zhe Tian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shujun Zhang
- Research and Development Center of Beijing Drainage Group Technology, Beijing 100022, China
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, China Key Laboratory of Environmental Biotechnology, Yiwu 322000, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Hou Z, Dong W, Wang H, Zhao Z, Li Z, Liu H, Li Y, Zeng Z, Xie J, Zhang L, Liu J. Response of nitrite accumulation to elevated C/NO- 3-N ratio during partial denitrification process: Insights of extracellular polymeric substance, microbial community and metabolic function. BIORESOURCE TECHNOLOGY 2023:129269. [PMID: 37290706 DOI: 10.1016/j.biortech.2023.129269] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
This study investigated the response of nitrite accumulation to elevated COD/NO3--N ratio (C/N) during partial denitrification (PD). Results indicated nitrite was gradually accumulated and remained stable (C/N = 1.5 ∼ 3.0), while that rapidly declined after reaching the peak (C/N = 4.0 ∼ 5.0). The polysaccharide (PS) and protein (PN) content of tightly-bound extracellular polymeric substances (TB-EPS) reached the maximum at C/N of 2.5 ∼ 3.0, which might be stimulated by high level of nitrite. Illumina MiSeq sequencing showed Thauera and OLB8 were dominated denitrifying genera at C/N of 1.5 ∼ 3.0, while Thauera was further enriched with fading OLB8 at C/N of 4.0 ∼ 5.0. Meanwhile, the highly-enriched Thauera might enhance the activity of nitrite reductase (nirK) promoting further nitrite reduction. Redundancy analysis (RDA) showed positive correlations between nitrite production and PN content of TB-EPS, denitrifying bacteria (Thauera and OLB8) and nitrate reductases (narG/H/I) in low C/N. Finally, their synergistic effects for driving nitrite accumulation were comprehensively elucidated.
Collapse
Affiliation(s)
- Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| | - Zhuoyang Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiwei Zeng
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jin Xie
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Liang Zhang
- Shenzhen Wanmu Water Services Co., Shenzhen 518000, China
| | - Jie Liu
- Shenzhen Wanmu Water Services Co., Shenzhen 518000, China
| |
Collapse
|
6
|
Gao M, Dang H, Zou X, Yu N, Guo H, Yao Y, Liu Y. Deciphering the role of granular activated carbon (GAC) in anammox: Effects on microbial succession and communication. WATER RESEARCH 2023; 233:119753. [PMID: 36841162 DOI: 10.1016/j.watres.2023.119753] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) offered an energy-efficient option for nitrogen removal from wastewater. Granular activated carbon (GAC) addition has been reported that improved biomass immobilization, but the role of GAC in anammox reactors has not been sufficiently revealed. In this study, it was observed that GAC addition in an upflow anaerobic sludge blanket (UASB) reactor led to the significantly shortened anammox enrichment time (shortened by 45 days) than the reactor without GAC addition. The nitrogen removal rate was 0.83 kg N/m3/day versus 0.76 kg N/m3/day in GAC and non-GAC reactors, respectively after 255 days' operation. Acyl-homoserine lactone (AHL) quorum sensing signal molecule C8-HSL had comparable concentrations in both anammox reactors, whereas the signal molecule C12-HSL was more pervasive in the reactor containing GAC than the reactor without GAC. Microbial analysis revealed distinct anammox development in both reactors, with Candidatus Brocadia predominant in the reactor that did not contain GAC, and Candidatus Kuenenia predominant in the reactor that contained GAC. Denitrification bacteria likely supported anammox metabolism in both reactors. The analyses of microbial functions suggested that AHL-dependent quorum sensing was enhanced with the addition of GAC, and that GAC possibly augmented the extracellular electron transfer (EET)-dependent anammox reaction.
Collapse
Affiliation(s)
- Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hongyu Dang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Najiaowa Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hengbo Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yiduo Yao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
7
|
Fan Z, Zhou X. Decoding the Role of Extracellular Polymeric Substances in Enhancing Nitrogen Removal from High-Ammonia and Low-C/N Wastewater in a Sequencing Batch Packed-Bed Biofilm Reactor. Polymers (Basel) 2023; 15:polym15061510. [PMID: 36987290 PMCID: PMC10051956 DOI: 10.3390/polym15061510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Although the role of extracellular polymeric substances (EPSs) as a viscous high-molecular polymer in biological wastewater treatment has been recognized, in-depth knowledge of how EPSs affect nitrogen removal remains limited in biofilm-based reactors. Herein, we explored EPS characteristics associated with nitrogen removal from high-ammonia (NH4+-N: 300 mg/L) and low carbon-to-nitrogen ratio (C/N: 2-3) wastewater in a sequencing batch packed-bed biofilm reactor (SBPBBR) under four different operating scenarios for a total of 112 cycles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier-transform infrared (FTIR) analysis revealed that the distinct physicochemical properties, interface microstructure, and chemical composition of the bio-carrier were conducive to biofilm formation and microbial immobilization and enrichment. Under the optimal conditions (C/N: 3, dissolved oxygen: 1.3 mg/L, and cycle time: 12 h), 88.9% ammonia removal efficiency (ARE) and 81.9% nitrogen removal efficiency (NRE) could be achieved in the SBPBBR. Based on visual and SEM observations of the bio-carriers, biofilm development, biomass concentration, and microbial morphology were closely linked with nitrogen removal performance. Moreover, FTIR and three-dimensional excitation-emission matrix (3D-EEM) spectroscopy demonstrated that tightly bound EPSs (TB-EPSs) play a more important role in maintaining the stability of the biofilm. Significant shifts in the number, intensity, and position of fluorescence peaks of EPSs determined different nitrogen removal. More importantly, the high presence of tryptophan proteins and humic acids might promote advanced nitrogen removal. These findings uncover intrinsic correlations between EPSs and nitrogen removal for better controlling and optimizing biofilm reactors.
Collapse
Affiliation(s)
- Zheng Fan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
8
|
Zhao P, Zhao S, Wang HG, Lu M, Li ZH. Encapsulation of bacteria in different stratified extracellular polymeric substances and its implications for performance enhancement and resource recovery. WATER RESEARCH 2022; 220:118684. [PMID: 35661510 DOI: 10.1016/j.watres.2022.118684] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 05/06/2023]
Abstract
Simultaneous recovery of biopolymers and enhanced bio-reactor performance are promising options for sustainable wastewater treatment, and the bioactivity of sludge after biopolymer extraction is thus critical for the performance of the system. To this end, stratified extracellular polymeric substances (EPS), including slime, loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS), were extracted, and the bioactivities of the consequent extraction residues were assessed using aerobic respirogram, kinetic, and flow cytometry (FCM). After the initial weak extraction of slime, the particle size distribution of the sludge significantly decreased, and subsequent extractions of LB-EPS and TB-EPS produced an equivalent size distribution. In contrast, the fractal dimension decreased after each extraction, suggesting that LB-EPS and TB-EPS affected the compactness of flocs rather than the size. The aerobic bacteria distribution estimated using respirogram shows that slime mainly encapsulated heterotrophs while LB-EPS mainly encapsulated nitrifiers. In addition, the ammonia-nitrogen affinity coefficient decreased from 1.79 to 0.28 mg/L when slime was removed, thereby encouraging the activities of autotrophic nitrifiers. Further removal of LB-EPS induced high energy dispersion as the maintenance coefficient m and the metabolic dispersion index μ/m increased from 0.11 to 0.22 and 0.44 to 0.63, respectively. Meanwhile, the yield rate decreased from 0.77 to 0.66. Although pellets that resulted from TB-EPS extraction were not aerobically active as described by respirogram and growth curves, they were still metabolically active as measured by live/dead cell counting and redox sensor green signal. These pellets used more energy for maintenance as indicated by the high maintenance coefficient than those residual after either slime or LB-EPS extraction. In addition, the variation in bacteria community distribution across flocs was related to the variation in temperatures, suggesting that the inner part of a floc might be hotter than the outer side. Therefore, compared to bacteria in the raw sludge, the viable bacteria bounded in LB-EPS and TB-EPS convert more energy to heat rather than growth. These results indicate that energy was dispersed as metabolic heat for the LB-EPS extracted sludge, and removal of LB-EPS favored thermogenesis and sludge reduction. Based on the above findings, a simultaneously EPS-recovery and performance enhancement configuration is thus proposed, which holds great promise for the integration of next-generation wastewater treatment plants.
Collapse
Affiliation(s)
- Pian Zhao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Song Zhao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hai-Guang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Meng Lu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|