1
|
Wang J, Liu D, Yu H, Song Y. Insight into suppression of dibutyl phthalate on DOM removal during municipal sewage treatment using fluorescence spectroscopy with PARAFAC and moving-window 2D-COS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163210. [PMID: 37003316 DOI: 10.1016/j.scitotenv.2023.163210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Dibutyl phthalate (DBP) has been widely detected in municipal and industrial wastewater, which could indirectly inhibit pollutant removals, especially degradation of dissolved organic matter (DOM). Here, the inhibition of DBP on DOM removal from wastewater in pilot-scale A2O-MBR system was investigated by fluorescence spectroscopy with two-dimensional correlation (2D-COS) and structural equation modeling (SEM). Seven components were extracted from DOM using parallel factor analysis, i.e., tryptophan-like (C1 and C2), fulvic-like (C4), tyrosine-like (C5), microbial humic-like (C6) and heme-like (C7). The tryptophan-like had a blue-shift at DBP occurrence, defined as blue-shift tryptophan-like (C3). DBP with 8 mg L-1 exhibited a stronger inhibition on removals of DOM fractions, extraordinarily tyrosine-like and tryptophan-like in anoxic unit than DBP of 6 mg L-1 by moving-window 2D-COS. The indirect removals of C1 and C2 through the C3 removal were more strongly inhibited by 8 mg L-1 DBP than those by 6 mg L-1 DBP, while the former exhibited a weaker inhibition on the direct degradation of C1 and C2 than the latter via SEM. Based on metabolic pathways, abundances of key enzymes secreted by microorganism in anoxic unit, degrading tyrosine-like and tryptophan-like, were higher in wastewater with 6 mg L-1 DBP than those with 8 mg L-1 DBP. These could provide a potential approach for online monitoring of DBP concentrations in wastewater treatment plants, which could rectify operating parameters, and then enhance the treatment efficiencies.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongping Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Wang LL, Yin ZY, Xu Y, Deng MY, Zhang KM, Wang Q, Chen RP, Yu L. Responses of Bacillus sp. under Cu(II) stress in relation to extracellular polymeric substances and functional gene expression level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27589-8. [PMID: 37195605 DOI: 10.1007/s11356-023-27589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
The production and composition of extracellular polymeric substances (EPS), as well as the EPS-related functional resistance genes and metabolic levels of Bacillus sp. under Cu(II) stress, were investigated. EPS production increased by 2.73 ± 0.29 times compared to the control when the strain was treated with 30 mg L-1 Cu(II). Specifically, the polysaccharide (PS) content in EPS increased by 2.26 ± 0.28 g CDW-1 and the PN/PS (protein/polysaccharide) ratio value increased by 3.18 ± 0.33 times under 30 mg L-1 Cu(II) compared to the control. The increased EPS secretion and higher PN/PS ratio in EPS strengthened the cells' ability to resist the toxic effect of Cu(II). Differential expression of functional genes under Cu(II) stress was revealed by Gene Ontology pathway enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The enriched genes were most obviously upregulated in the UMP biosynthesis pathway, the pyrimidine metabolism pathway, and the TCS metabolism pathway. This indicates an enhancement of EPS regulation-related metabolic levels and their role as a defense mechanism for cells to adapt to Cu(II) stress. Additionally, seven copper resistance genes were upregulated while three were downregulated. The upregulated genes were related to the heavy metal resistance, while downregulated genes were related to cell differentiation, indicating that the strain had initiated an obvious resistance to Cu(II) despite its severe cell toxicity. These results provided a basis for promoting EPS-regulated associated functional genes and the application of gene-regulated bacteria in heavy metal-containing wastewater treatment.
Collapse
Affiliation(s)
- Ling-Ling Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zheng-Yan Yin
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yun Xu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Miao-Yu Deng
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai-Ming Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Quan Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Rong-Ping Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|