1
|
Dong Z, Wang WX. Modeling the differential functional responses and selectivity of a marine copepod to nano/microplastics in mixture. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135805. [PMID: 39265392 DOI: 10.1016/j.jhazmat.2024.135805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Nano- and microplastics (NMPs) pollution is widespread in the oceans, posing potential risks to marine species. This study examined the accumulation capacity and selectivity potentials of NMPs by a marine copepod Parvocalanus crassirostris under different food mixtures by modeling the combined biokinetic and functional response. We investigated two sizes of NMPs (200 nm and 5 µm) across a concentration gradient (0 - 5000 µg/L) and varying diatom abundances (0, 104, 105 cells/mL). Fluorescence imaging and quantification revealed that P. crassirostris actively ingested NMPs at low concentration. Accumulation increased with NMPs concentration but eventually saturated due to gut capacity limits, following a Holling type II functional response (i.e., hyperbolic curve). Our novel functional response model estimated the key parameters and demonstrated that the maximum accumulation reached 5.3 % of dry weight with averaged half-saturation constants of 229 µg/L. The size of NMPs did not significantly affect the total accumulation or satiety levels. The presence of diatoms influenced the feeding selectivity and decreased the microplastic accumulation by 73 % at 105 cells/mL, while facilitating nanoplastic accumulation by 81 % at 104 cells/mL. This study enhanced our understanding of NMPs bioavailability and environmental fate in marine ecosystems.
Collapse
Affiliation(s)
- Zipei Dong
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
2
|
Pinto EP, Paredes E, Santos-Echeandía J, Campillo JA, León VM, Bellas J. Comparative assessment of microplastics and microalgae as vectors of mercury and chlorpyrifos in the copepod Acartia tonsa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173791. [PMID: 38862041 DOI: 10.1016/j.scitotenv.2024.173791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Microplastics (MPs) raise concerns not only as pollutants themselves, but also due to their ability to act as vectors of pollutants adsorbed from seawater, transferring them to marine organisms. However, the relevance of MPs as carriers of pollutants compared to microalgae needs further exploration. This study compared the role of MPs (2-10 μm non-oxidized and 10-15 μm oxidized high-density polyethylene) and natural organic particles (Rhodomonas lens microalgae, MA) as carriers of mercury (Hg, 2.3 μg Hg/L) and chlorpyrifos (CPF, 1.0 μg CPF/L) to adult Acartia tonsa copepods, after 24-48 h exposure. Dose-response experiments were first performed with adult female copepods exposed to oxidized MPs (0.25-4.0 mg/L), waterborne Hg (0.01-10.0 μg/L) and Ox MPs + Hg (0.25-4.0 mg oxidized MPs/L + 0.50-8.0 μg Hg/L) for 48 h, to complement previous studies that focused on the pesticide CPF. Effects were evaluated with four replicates for physiological and reproductive responses (6 females/replicate), biochemical techniques (40 individuals/replicate) and Hg/CPF bioaccumulation measurements (1000 individuals/replicate). Copepods accumulated Hg/CPF similarly from dissolved pollutants (6204 ± 2265 ng Hg/g and 1251 ± 646 ng CPF/g) and loaded MPs (3125 ± 1389 ng Hg/g and 1156 ± 266 ng CPF/g), but significantly less from loaded MA (21 ± 8 ng Hg/g and 173 ± 80 ng CPF/g). After 24-48 h, copepods exposed to MPs + Hg/CPF showed generally greater biological effects than those exposed to dissolved Hg/CPF or to MA + Hg/CPF, although differences were not statistically significant. MA + CPF had significantly lower AChE inhibition (1073.4 nmol min-1 mg-1) and MA + Hg lower GRx induction (48.8 nmol min-1 mg-1) compared to MPs + Hg/CPF and dissolved Hg/CPF (182.8-236.4 nmol min-1 mg-1 of AChE and 74.1-101.7 nmol min-1 mg-1 of GRx). Principal component analysis suggested different modes of action for Hg and CPF.
Collapse
Affiliation(s)
- Estefanía P Pinto
- Centro de Investigación Mariña Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, ECOCOST, 36310 Vigo, Spain.
| | - Estefanía Paredes
- Centro de Investigación Mariña Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, ECOCOST, 36310 Vigo, Spain
| | - Juan Santos-Echeandía
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida Radio Faro, 50, 36390 Vigo, Spain
| | - Juan Antonio Campillo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO-CSIC), Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - Víctor M León
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO-CSIC), Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida Radio Faro, 50, 36390 Vigo, Spain
| |
Collapse
|
3
|
Zheng Y, Xiaoxian L, Hu J, Sun Y, Zhu H, Xu G. Chlorella alleviates the intestinal damage of tilapia caused by microplastics. CHEMOSPHERE 2024; 353:141644. [PMID: 38442774 DOI: 10.1016/j.chemosphere.2024.141644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/07/2024]
Abstract
Polyethylene microplastics (MPs) of the different sizes may result in different response in fish. Studies showed microorganisms adhered to the surface of MPs have toxicological effect. Juveniles tilapia (Oreochromis niloticus, n = 600, 26.5 ± 0.6 g) were dispersed into six groups: the control group (A), 75 nm MP exposed group (B), 7.5 μm group (C) and 750 (D) μm group, 75 nm + 7.5 μm+750 μm group (E) and 75 nm + Chlorella vulgaris group (F), and exposed for 10 and 14 days. The intestinal histopathological change, enzymic activities, and the integrated "omics" workflows containing transcriptomics, proteomics, microbiota and metabolomes, have been performed in tilapia. Results showed that MPs were distributed on the surface of goblet cells, Chlorella group had severe villi fusion without something like intestinal damage, as in other MPs groups. The intestinal Total Cholesterol (TC, together with group E) and Tumor Necrosis Factor α (TNFα, except for group B) contents in group F were significantly increased, cytochrome p450 1a1 (EROD, group B and E) significantly increased, adenosine triphosphate (ATP), lipoprotein lipase (LPL) and caspase 3 (except group B) also significantly increased at 14 d. At 14 days, group E saw considerably higher regulation of the actin cytoskeleton, focal adhesion, insulin signaling pathway, and AGE-RAGE signaling pathway in diabetes complications. Whereas, chlorella enhanced the focal adhesion, cytokine-cytokine receptor interaction, and MAPK signaling pathways. PPAR signaling pathway has been extremely significantly enriched via the proteomics method. Candidatus latescibacteria, C. uhrbacteria, C. abyssubacteria, C. cryosericota significantly decreased caused by MPs of different particle sizes. Carboxylic acids and derivatives, indoles and derivatives, organooxygen compounds, fatty acyls and organooxygen compounds significantly increased with long-term duration, especially PPAR signaling pathway. MPs had a size-dependent long-term effect on histopathological change, gene and protein expression, and gut microbial metabolites, while chlorella alleviates the intestinal histopathological damage via the integrated "omics" workflows.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China.
| | - Lu Xiaoxian
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China
| | - Jiawen Hu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China
| | - Haojun Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, 214081, China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, China.
| |
Collapse
|
4
|
Fagiano V, Alomar C, Ventero A, de Puelles MLF, Iglesias M, Deudero S. First assessment of anthropogenic particle ingestion in Pontellid copepods: Pontella mediterranea as a potential microplastic reservoir in the Neuston. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168480. [PMID: 37951251 DOI: 10.1016/j.scitotenv.2023.168480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Hyponeustonic species, living at the interface between the atmosphere and the oceans, comprise one of the most understudied and vast critical marine biotope, constantly exposed to high concentrations of anthropogenic contaminants and microplastic (MPs). Copepods of the Pontellidae family represent the primary components of this biotic assemblage worldwide, and their interaction with MPs is still unknown. We studied this interaction for the first time in Pontella mediterranea, assessing the ingestion of anthropogenic particles (APs) in 2793 individuals collected by manta trawl in the Northern Alboran Sea. We observed P. mediterranea abundances ranging from 41.67 to 1174.83 ind/m3, with a mean ingestion of 0.11 APs/ind, predominantly composed of MPs. These results confirm the low ingestion values observed for other copepod taxa. However, given its abundance, this species could retain an average of 45.15 and a maximum of 220 APs per m3 of seawater (APs/m3), mostly composed of cellulose acetate and cotton fibers. The abundances of APs were evaluated in surface (0-12 cm) and sub-surface waters (5 m depth) by combining manta trawl and Continuous Underway Fish Egg Sampler sampling. The AP abundances found (surface waters: 0.67 ± 1.04 APs/m3; subsurface waters: 3.85 ± 2.67 APs/m3) were consistent with those previously observed in the Mediterranean basin, confirming that the ingestion values observed in P. mediterranea are not due to a local accumulation of environmental MPs. Results highlight how this neustonic copepod could represent one of the largest reservoirs of APs within the upper layers of the oceans, representing an entry point for these particles within food webs. Considering the worldwide distribution and abundance of this family of copepods, the results are of environmental concern.
Collapse
Affiliation(s)
- V Fagiano
- Oceanographic Center of the Balearic Islands (COB-IEO, CSIC), Moll de Ponent s/n, 07015 Palma, Balearic Islands, Spain.
| | - C Alomar
- Oceanographic Center of the Balearic Islands (COB-IEO, CSIC), Moll de Ponent s/n, 07015 Palma, Balearic Islands, Spain
| | - A Ventero
- Oceanographic Center of the Balearic Islands (COB-IEO, CSIC), Moll de Ponent s/n, 07015 Palma, Balearic Islands, Spain
| | - M L Fernández de Puelles
- Oceanographic Center of the Balearic Islands (COB-IEO, CSIC), Moll de Ponent s/n, 07015 Palma, Balearic Islands, Spain
| | - M Iglesias
- Oceanographic Center of the Balearic Islands (COB-IEO, CSIC), Moll de Ponent s/n, 07015 Palma, Balearic Islands, Spain
| | - S Deudero
- Oceanographic Center of the Balearic Islands (COB-IEO, CSIC), Moll de Ponent s/n, 07015 Palma, Balearic Islands, Spain
| |
Collapse
|
5
|
Onay H, Minaz M, Ak K, Er A, Emanet M, Karslı B, Bilgin S. Decade of microplastic alteration in the southeastern black sea: An example of seahorse gastrointestinal tracts. ENVIRONMENTAL RESEARCH 2023; 218:115001. [PMID: 36481368 DOI: 10.1016/j.envres.2022.115001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Unconscious and excessive use of plastic supports the diversity and abundance of microplastics (MPs) in marine environments. As a result of MP exposure, organisms in the marine environment are faced with adverse scenarios up to death. In this study, ten-year MP composition was investigated in gastrointestinal tracts (GITs) of low-mobility seahorses (90 individuals per period) from the Southeastern Black Sea. Seahorse GITs sampled during both 2012 and 2022 contain 102 and 135 MP items, respectively. The number of MPs per unit individual seahorse and unit seahorse weight was higher in the 2022 period. On the other hands, no significant differences were observed between the MP lengths of both periods. The majority of MPs in both sample periods were materials shorter than 1000 μm. Of the eight found synthetic polymers, five belonged to the 2012 period, while seven were observed during the 2022 period. Additionally, the most abundant synthetic polymer for both periods is polyvinyl stearate (PVS). As a result, 43% of the total plastic material belonged to the 2012 period, while 57% was observed in the 2022 period. Considering both the diversity of polymers and the abundance of plastics, the region was adversely affected by plastic materials in the 2022 period.
Collapse
Affiliation(s)
- Hatice Onay
- Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Mert Minaz
- Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey.
| | - Kübra Ak
- Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Akif Er
- Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Muhammet Emanet
- Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Barış Karslı
- Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Sabri Bilgin
- Faculty of Fisheries, Sinop University, Sinop, Turkey
| |
Collapse
|
6
|
Liu A, Zheng M, Qiu Y, Hua Y, Li Y, Jiang Y, Ning K, Hu S, Wang L. Study of the scavenger and vector roles of microplastics for polyhalocarbazoles under simulated gastric fluid conditions. ENVIRONMENTAL RESEARCH 2022; 212:113565. [PMID: 35623441 DOI: 10.1016/j.envres.2022.113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Microplastics entering the digestive system of living organisms can serve as a carrier of hydrophobic organic pollutants (HOPs), increasing their exposure levels and the health risks they pose to both humans and animals. The desorption kinetics of six polyhalocarbazoles (PHCZs) from 5 mm and 0.15 mm polypropylene (PP) and polyvinyl chloride (PVC) microplastic particles were assessed using a combined microplastics and food system, representing the gastric system of vertebrates and invertebrates. Results showed that the chemical transfer of PHCZs is biphasic and reversible, with rapid exchange occurring within 2-48 h, followed by a period of slow transfer, which continues for weeks to months. The desorption capacity of PHCZs loaded on 0.15 mm microplastic particles was greater than that of 5 mm particles. The bioavailability percentage of PHCZ congeners for PP (24.2%-65.3%) and PVC (43.5%-57.2%) in the vertebrate fluid system were all lower than those in the invertebrate system (34.2%-70.7% for PP and 56.3%-72.7% for PVC, respectively). These findings indicate that physiological conditions, such as polarity, ingestion fluid, and microplastic affect the desorption of PHCZs from microplastics. In addition, desorption from PP was inhibited by the presence of foodstuff loaded with PHCZs due to competition, while desorption from PVC was not significantly affected by the presence of PHCZs contaminant food. Microplastics could provide a cleaning function in gastric fluid systems containing contaminated foodstuff, especially PP, which was capable of competitive adsorption of PHCZs from food. Few investigations have focused on the adverse effects of microplastic ingestion on human health, particularly in their role as vectors for HOPs, compared to other routes of exposure and transport. Therefore, these findings provide valuable insight into the health risks associated with dietary intake of microplastics and HOPs.
Collapse
Affiliation(s)
- Aifeng Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Minggang Zheng
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Ying Qiu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yi Hua
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Ying Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yuqing Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Ke Ning
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shanmin Hu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Ling Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|