1
|
Singh P, Bisen M, Kulshreshtha S, Kumar L, Choudhury SR, Nath MJ, Mandal M, Kumar A, Patel SKS. Advancement in Anaerobic Ammonia Oxidation Technologies for Industrial Wastewater Treatment and Resource Recovery: A Comprehensive Review and Perspectives. Bioengineering (Basel) 2025; 12:330. [PMID: 40281690 PMCID: PMC12024423 DOI: 10.3390/bioengineering12040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Anaerobic ammonium oxidation (anammox) technologies have attracted substantial interest due to their advantages over traditional biological nitrogen removal processes, including high efficiency and low energy demand. Currently, multiple side-stream applications of the anammox coupling process have been developed, including one-stage, two-stage, and three-stage systems such as completely autotrophic nitrogen removal over nitrite, denitrifying ammonium oxidation, simultaneous nitrogen and phosphorus removal, partial denitrification-anammox, and partial nitrification and integrated fermentation denitritation. The one-stage system includes completely autotrophic nitrogen removal over nitrite, oxygen-limited autotrophic nitrification/denitrification, aerobic de-ammonification, single-stage nitrogen removal using anammox, and partial nitritation. Two-stage systems, such as the single reactor system for high-activity ammonium removal over nitrite, integrated fixed-film activated sludge, and simultaneous nitrogen and phosphorus removal, have also been developed. Three-stage systems comprise partial nitrification anammox, partial denitrification anammox, simultaneous ammonium oxidation denitrification, and partial nitrification and integrated fermentation denitritation. The performance of these systems is highly dependent on interactions between functional microbial communities, physiochemical parameters, and environmental factors. Mainstream applications are not well developed and require further research and development. Mainstream applications demand a high carbon/nitrogen ratio to maintain levels of nitrite-oxidizing bacteria, high concentrations of ammonium and nitrite in wastewater, and retention of anammox bacteria biomass. To summarize various aspects of the anammox processes, this review provides information regarding the microbial diversity of different genera of anammox bacteria and the engineering aspects of various side streams and mainstream anammox processes for wastewater treatment. Additionally, this review offers detailed insights into the challenges related to anammox technology and delivers solutions for future sustainable research.
Collapse
Affiliation(s)
- Pradeep Singh
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Sourabh Kulshreshtha
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; (P.S.); (M.B.); (S.K.)
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Shubham R. Choudhury
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Mayur J. Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India; (S.R.C.); (M.J.N.); (M.M.)
| | - Aman Kumar
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
| | - Sanjay K. S. Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
| |
Collapse
|
2
|
Wang L, Zhang C, Liu Y, Qiu Y, Wanyan D, Liu J, Cheng G, Lin P, Huang X. Achieving mainstream nitrogen removal by partial nitrification and anammox in the carriers-coupled membrane aerated biofilm reactor. WATER RESEARCH 2025; 271:123000. [PMID: 39708620 DOI: 10.1016/j.watres.2024.123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/17/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
The integration of partial nitrification-anammox (PN/A) into membrane-aerated biofilm reactor (MABR) is a promisingly energy-efficient and high-efficiency technology for nitrogen removal. The inhibition of nitrite oxidizing bacteria (NOB) remains as the most significant challenge for its development. In our investigation, we proposed a novel process to integrate carriers to MABR (CMABR), which combined the carriers enriched with anaerobic ammonium-oxidizing bacteria (AnAOB) and partial nitrifying MABR system. The effect of different hydraulic retention time (HRT) was explored in CMABR and it showed that the nitrogen removal rate of CMABR could reach more than 200 g-N/(m3·d) at an HRT of 3 h The increase of NOB activity was witnessed when the residual NH4+-N concentration was lower than 5 mg-N/L. Finally, the higher nitrogen removal rate and successful PN/A can be achieved by optimized condition through the operation of two-stage CMABRs with 30 % of carriers filling ratio and a total HRT of 6 h Superior NH4+-N removal efficiency (97 %) and total nitrogen removal efficiency (81 %) were reached compared with other MABR for PN/A processes. The CMABR exerted the special advantage that significant AnAOB attached on the carriers, rather than only on the membrane biofilm, thus it was beneficial to maintain the activity of ammonia oxidizing bacteria (AOB) and improve the nitrogen removal rate and effluent quality. This investigation provides creative and significant perspectives for the design and operation of PN/A processes in the future MABR applications.
Collapse
Affiliation(s)
- Lisheng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Congcong Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yong Qiu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Deqing Wanyan
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215009, China
| | - Jiayin Liu
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215009, China
| | - Gang Cheng
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215009, China
| | - Pengfei Lin
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215009, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Research and Application Centre for Membrane Technology, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Mei N, Jia F, Wang H, Hu Z, Han B, Chen Y, Zhao X, Han X, Zhang J, Li D, Yao H, Guo J. Partitioned granular sludge coupling with membrane-aerated biofilm reactor for efficient autotrophic nitrogen removal. BIORESOURCE TECHNOLOGY 2024; 414:131570. [PMID: 39368628 DOI: 10.1016/j.biortech.2024.131570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The partial nitritation-anammox process based on a membrane-aerated biofilm reactor (MABR) faces several challenges, such as difficulty in suppressing nitrite-oxidizing bacteria (NOB), excessive effluent nitrate, and ineffective synergy between denitrification and anammox bacteria. Therefore, a novel partitioned granular sludge coupling with MABR (G-MABR) was constructed. The chemical oxygen demand (COD) and nitrogen removal efficiency were 88.8 ± 1.8 %-92.6 ± 1.2 % and 88.8 ± 1.5 %-93.6 ± 0.7 %, respectively. The COD was mainly lowered in the lower granular sludge-zone, while nitrogen was removed in the upper MABR-zone. NOB was significantly suppressed in the MABR-zone due to competition for substrate with denitrifying bacteria and anammox bacteria. This partitioned configuration reduced the C/N ratio in the MABR-zone, thus facilitating autotrophic nitrogen removal. Both partial nitrification and denitrification provided nitrite for anammox bacteria in granular sludge, whereas partial nitrification mainly supplied nitrite to the anammox bacteria in membrane biofilms.
Collapse
Affiliation(s)
- Ning Mei
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Fangxu Jia
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Zhifeng Hu
- Key Laboratory of Energy-Water Conservation and Wastewater Resources Recovery of China National Light Industry, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China
| | - Baohong Han
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Yao Chen
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Xingcheng Zhao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Xiangyu Han
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Jingjing Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Dongmei Li
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Hong Yao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
4
|
Lu Y, Liu T, Wang H, Zuo L, Hu S, Yuan Z, Bagg W, Guo J. Gas-delivery membrane as an alternative aeration method to remove dissolved methane from anaerobically treated wastewater. WATER RESEARCH 2024; 268:122760. [PMID: 39536642 DOI: 10.1016/j.watres.2024.122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Dissolved methane is a hurdle for anaerobic wastewater treatment, which would be stripped into the atmosphere by conventional bubble aeration and increase the release of greenhouse gases into the environment. The high oxygen transfer efficiency and less turbulence in membrane aerated biofilm reactor (MABR) could prevent the stripping of dissolved methane. In this study, an MABR was established to remove dissolved methane aerobically in parallel to the nitrogen removal driven by the anammox process. The long-term results demonstrated that aerobic methane oxidation has a short start-up period, in which a high level (>90 %) of dissolved methane removal was achieved in 20 days. Meanwhile, the anammox-based nitrogen removal process reached a total nitrogen removal rate of ∼150 mg N/L/d (0.27 g N/m2/d). In situ batch tests confirmed the active bioreactions of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, anammox bacteria and aerobic methanotrophs, while 16S rRNA gene amplicon sequencing further validated their existence. Moreover, nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) bacteria were enriched to a relative abundance of 2.5 % on Day 372, suggesting their potential role in removing nitrogen and dissolved methane in the MABR. This study provides an alternative technology for removing dissolved methane and nitrogen in parallel from anaerobically treated wastewater.
Collapse
Affiliation(s)
- Yan Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, Beijing 100083, China
| | - Lukun Zuo
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, Beijing 100083, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Wayne Bagg
- Water Corporation, 629 Newcastle St, Leederville, WA 6007, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
5
|
Wang L, Zhang C, Kang X, Liu Y, Qiu Y, Wanyan D, Liu J, Cheng G, Huang X. Establishing mainstream partial nitrification in the membrane aerated biofilm reactor by limiting the oxygen concentration in the biofilm. WATER RESEARCH 2024; 261:121984. [PMID: 38924949 DOI: 10.1016/j.watres.2024.121984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The proliferation of nitrite oxidizing bacteria (NOB) still remains as a major challenge for nitrogen removal in mainstream wastewater treatment process based on partial nitrification (PN). This study investigated different operational conditions to establish mainstream PN for the fast start-up of membrane aerated biofilm reactor (MABR) systems. Different oxygen controlling strategies were adopted by employing different influent NH4+-N loads and oxygen supply strategies to inhibit NOB. We indicated the essential for NOB suppression was to reduce the oxygen concentration of the inner biofilm and the thickness of aerobic biofilm. A higher NH4+-N load (7.4 g-N/(m2·d)) induced higher oxygen utilization rate (14.4 g-O2/(m2·d)) and steeper gradient of oxygen concentration, which reduced the thickness of aerobic biofilm. Employing closed-end oxygen supply mode exhibited the minimum concentration of oxygen to realize PN, which was over 46% reduction of the normal open-end oxygen mode. Under the conditions of high NH4+-N load and closed-end oxygen supply mode, the microbial community exhibited a comparative advantage of ammonium oxidizing bacteria over NOB in the aerobic biofilm, with a relative abundance of Nitrosomonas of 30-40% and no detection of Nitrospira. The optimal fast start-up strategy was proposed with open-end aeration mode in the first 10 days and closed-end mode subsequently under high NH4+-N load. The results revealed the mechanism of NOB inhibition on the biofilm and provided strategies for a quick start-up and stable mainstream PN simultaneously, which poses great significance for the future application of MABR.
Collapse
Affiliation(s)
- Lisheng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Congcong Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xiaofeng Kang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yong Qiu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Deqing Wanyan
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215009, China
| | - Jiayin Liu
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215009, China
| | - Gang Cheng
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215009, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Research and Application Centre for Membrane Technology, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Cao Y, Cui Z, Daigger GT. Monitoring biofilm thickness using the membrane aerated biofilm reactor (MABR) fingerprint soft sensor to optimize nitrogen removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10955. [PMID: 38095263 DOI: 10.1002/wer.10955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
The ongoing commercialization and installation of full-scale membrane aerated biofilm reactors (MABRs) stimulate the increasing need to monitor biofilm development. Biofilm thickness in MABRs can be assessed indirectly by plotting the exhaust oxygen purity versus bulk ammonia concentration, defined here as the MABR fingerprint soft sensor. Dynamic simulations with diurnal flow variations of an MABR unit model were implemented over a broad range of biofilm thicknesses and influent conditions consisting of variable C/N ratios and applied ammonia fluxes to assess the utility of the MABR fingerprint. Results show that the continuously decreasing trend of the MABR fingerprint plot slopes can be employed as a useful signal for biofilm thickness control in nitrogen removal processes. This technique is useful in a wide range of influent conditions and is helpful for MABR operators and designers to arrange biofilm thickness control events efficiently and determine where in an overall treatment process the technique can be applied to control biofilm thickness and optimize process performance. PRACTITIONER POINTS: The linear relationship between exhaust oxygen purity and bulk ammonia concentration is defined as the MABR fingerprint plot. MABR fingerprint plots are generated for a given biofilm thickness with diurnal flow or short-term loading variations implemented. Continuously decreasing trends of the MABR fingerprint plot slopes are useful signals for biofilm control in nitrogen removal. The MABR fingerprint is useful over a wide range of influent conditions regarding C/N ratios and applied ammonia fluxes. MABR practitioners can use the fingerprint plots to determine when biofilm control measures should be taken.
Collapse
Affiliation(s)
- Yi Cao
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zihao Cui
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Glen T Daigger
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Lu Y, Liu T, Niu C, Duan H, Zheng M, Hu S, Yuan Z, Wang H, Guo J. Challenges of suppressing nitrite-oxidizing bacteria in membrane aerated biofilm reactors by low dissolved oxygen control. WATER RESEARCH 2023; 247:120754. [PMID: 37897992 DOI: 10.1016/j.watres.2023.120754] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Membrane aerated biofilm reactor (MABR) and shortcut nitrogen removal are two types of solutions to reduce energy consumption in wastewater treatment, with the former improving the aeration efficiency and the latter reducing the oxygen demand. However, integrating these two solutions, i.e., achieving shortcut nitrogen removal in MABR, is challenging due to the difficulty in suppressing nitrite-oxidizing bacteria (NOB). In this study, four MABRs were established to demonstrate the feasibility of initiating, maintaining, and restoring NOB suppression using low dissolved oxygen (DO) control, in the presence and absence of anammox bacteria, respectively. Long-term results revealed that the strict low DO (< 0.1 mg/L) in MABR could initiate and maintain stable NOB suppression for more than five months with nitrite accumulation ratio above 90 %, but it was unable to re-suppress NOB once they prevailed. Moreover, the presence of anammox bacteria increased the threshold of DO level to maintain NOB suppression in MABRs, but it was still incapable to restore the deteriorated NOB suppression in conjunction with low DO control. Mathematical modelling confirmed the experimental results and further explored the differences of NOB suppression in conventional biofilms and MABR biofilms. Simulation results showed that it is more challenging to maintain stable NOB suppression in MABRs compared to conventional biofilms, regardless of biofilm thickness or influent nitrogen concentration. Kinetic mechanisms for NOB suppression in different types of biofilms were proposed, suggesting that it is difficult to wash out NOB developed in the innermost layer of MABR biofilms because of the high oxygen level and low sludge wasting rate. In summary, this study systematically demonstrated the challenges of NOB suppression in MABRs through both experiments and mathematical modelling. These findings provide valuable insights into the applications of MABRs and call for more studies in developing effective strategies to achieve stable shortcut nitrogen removal in this energy-efficient configuration.
Collapse
Affiliation(s)
- Yan Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Chenkai Niu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, Beijing 100083, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
8
|
Siagian UWR, Friatnasary DL, Khoiruddin K, Reynard R, Qiu G, Ting YP, Wenten IG. Membrane-aerated biofilm reactor (MABR): recent advances and challenges. REV CHEM ENG 2023. [DOI: 10.1515/revce-2021-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Membrane-aerated biofilm reactor (MABR) has been considered as an innovative technology to solve aeration issues in conventional bioreactors. MABR uses a membrane to supply oxygen to biofilm grown on the membrane surface. MABR can perform bubbleless aeration with high oxygen transfer rates, which can reduce energy requirements and expenses. In addition, a unique feature of counter-diffusion creates a stratified biofilm structure, allowing the simultaneous nitrification–denitrification process to take place in a single MABR. Controlling the biofilm is crucial in MABR operation, since its thickness significantly affects MABR performance. Several approaches have been proposed to control biofilm growth, such as increasing shear stress, adding chemical agents (e.g., surfactant), using biological predators to suppress microorganism growth, and introducing ultrasound cavitation to detach biofilm. Several studies also showed the important role of membrane properties and configuration in biofilm development. In addition, MABR demonstrates high removal rates of pollutants in various wastewater treatments, including in full-scale plants. This review presents the basic principles of MABR and the effect of operational conditions on its performance. Biofilm formation, methods to control its thickness, and membrane materials are also discussed. In addition, MABR performance in various applications, full-scale MBRs, and challenges is summarized.
Collapse
Affiliation(s)
- Utjok W. R. Siagian
- Department of Petroleum Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Dwi L. Friatnasary
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Khoiruddin Khoiruddin
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Reynard Reynard
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology , B4-405, Daxuecheng, 510006 Guangzhou , China
| | - Yen-Peng Ting
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4, 117576 Singapore , Singapore
| | - I Gede Wenten
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
- Research Center for Bioscience and Biotechnology, Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| |
Collapse
|
9
|
Flores-Alsina X, Uri-Carreno N, Nielsen PH, Gernaey KV. Modelling the impacts of operational conditions on the performance of a full-scale membrane aerated biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158980. [PMID: 36174687 DOI: 10.1016/j.scitotenv.2022.158980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Membrane Aerated Biofilm Reactors (MABR) are gaining more and more acceptance in the plethora of wastewater process intensification technologies. Mathematical modelling has contributed to show their feasibility in terms of reduced energy consumption and footprint. Nevertheless, most simulation studies published until now are still focused on analyzing MABR as single units and not fully integrated within the flow diagram of the water treatment plant (WWTP). In this paper, the prediction capabilities of an integrated modelling approach is tested using full-scale data from Ejby Mølle WWTP+MABR site (Odense, Denmark). Mass balances, data reconciliation methods, process simulation and the different evaluation criteria were used to adjust influent, effluent and process indicators. Results show 10 % mismatch between flow, COD, N and P predictions and measurements in different plant locations. Using the adopted hydraulic retention time (HRT), nitrogen load (NL), membrane surface area (MA) and oxygen transfer rate (OTR), it was possible to predict nitrification rates (NR) within the interquartile range. This has been done under two different MABR operational conditions: with (#S2) and without (#S1) external aeration (EA) in the bulk liquid. The model provides additional process insights about biofilm structure, substrate gradients, weak acid base chemistry and precipitation potential. More specifically, simulations suggest the potential undesirable effects of sulfate (SRB) and iron reducing bacteria (IRB) on both microbial activity and composition of the biofilm. The latter may have a strong impact on ammonium (NHx), sulfate (SOx) and ferrous ion (Fe+2) conversion processes. The change of operational strategy in the scenario analysis highlights that the denitrifying activity of phosphorus accumulating organisms (PAOs) can enhance nutrient removal in MABR tanks. In addition, it was possible to assess the chance of success (in terms of energetic cost of nitrogen removal) of adding several MABR units in one tank of the WWTP under study before full-scale implementation.
Collapse
Affiliation(s)
- Xavier Flores-Alsina
- PROSYS Research Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs. Lyngby 2800, Denmark.
| | - Nerea Uri-Carreno
- PROSYS Research Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs. Lyngby 2800, Denmark; Vandcenter Syd A/S, Vandværksvej 7, Odense 5000, Denmark.
| | - Per H Nielsen
- Vandcenter Syd A/S, Vandværksvej 7, Odense 5000, Denmark.
| | - Krist V Gernaey
- PROSYS Research Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|