1
|
Wang Z, Lü C, Wang Y, Gomes RL, Clarke CJ, Gomes HI. Zero-valent iron (ZVI) facilitated in-situ selenium (Se) immobilization and its recovery by magnetic separation: Mechanisms and implications for microbial ecology. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134591. [PMID: 38761763 DOI: 10.1016/j.jhazmat.2024.134591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Selenium (Se(VI)) is environmentally toxic. One of the most popular reducing agents for Se(VI) remediation is zero-valent iron (ZVI). However, most ZVI studies were carried out in water matrices, and the recovery of reduced Se has not been investigated. A water-sediment system constructed using natural sediment was employed here to study in-situ Se remediation and recovery. A combined effect of ZVI and unacclimated microorganisms from natural sediment was found in Se(VI) removal in the water phase with a removal efficiency of 92.7 ± 1.1% within 7 d when 10 mg L-1 Se(VI) was present. Soluble Se(VI) was removed from the water and precipitated to the sediment phase (74.8 ± 0.1%), which was enhanced by the addition of ZVI (83.3 ± 0.3%). The recovery proportion of the immobilized Se was 34.2 ± 0.1% and 92.5 ± 0.2% through wet and dry magnetic separation with 1 g L-1 ZVI added, respectively. The 16 s rRNA sequencing revealed the variations in the microbial communities in response to ZVI and Se, which the magnetic separation could potentially mitigate in the long term. This study provides a novel technique to achieve in-situ Se remediation and recovery by combining ZVI reduction and magnetic separation.
Collapse
Affiliation(s)
- Zhongli Wang
- Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Changwei Lü
- Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanming Wang
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Coby J Clarke
- Glaxo Smith Kline Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham, Nottingham NG7 2GA, United Kingdom
| | - Helena I Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
2
|
Yan X, Meng Q, Ammami MT, Wei L. Effect of PAM on Surface Hydrophobicity of Montmorillonite and Difference of Interface Adsorption: An Experimental and Simulation Study. ACS OMEGA 2024; 9:15818-15832. [PMID: 38617642 PMCID: PMC11007841 DOI: 10.1021/acsomega.3c07467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 04/16/2024]
Abstract
How to realize efficient treatment of coal slime generated by a coal washing operation is an urgent problem to be solved in this industry. The presence of clay minerals, especially highly hydrophilic montmorillonite (MMT), is the key to the poor treatment effect of coal slime. Polyacrylamide (PAM) is very popular as a polymer agent to improve the treatment of coal slime. However, when it is used to treat coal slime with a high content of MMT, the selection of PAM type and the mechanism of action are still lacking. In this study, the effects of different types of PAM on the treatment of coal slime water containing MMT are considered by sedimentation and press filtration tests. The interaction mechanism of PAM on the MMT surface is studied by using ζ-potential, Brunauer-Emmett-Teller (BET) analysis, low-field nuclear magnetic resonance, density functional theory (DFT), and molecular dynamics (MD) simulations. The results show that the three PAM can improve the sedimentation and filtration effect of coal slime water, and the performance is CPAM > NPAM > APAM. The ζ-potential of the MMT (001) surface increases under the action of three PAM, and the effect of CPAM is the most significant. The adsorption of PAM on the MMT (001) surface has the ability to neutralize the surface charge of MMT. The flocculation of MMT particles under PAM results in an increase of particle size and a decrease of specific surface area. Meanwhile, the pore volume of MMT decreases, and the average pore size increases. In addition, PAM mainly removes vicinal water on the MMT surface. The active sites of the MMT surface and PAM are calculated by DFT. The adsorption of three PAM structural units on the MMT Na-001 surface and non-001 surface is nonbonding interaction, and the adsorption energy of CPAM is the largest. And the left shift of εp of the O atom on the MMT surface is conducive to the stable adsorption of CPAM. The MD results show that the concentration of water molecules on the surface of MMT Na-001 decreases after PAM is adsorbed on the MMT Na-001 surface, indicating that PAM can keep water molecules away from the surface of MMT, which means that the hydrophobicity of the MMT surface is enhanced. This study has guiding significance for the selection of PAM and the development of new flocculants in the treatment of coal slime with a high content of MMT.
Collapse
Affiliation(s)
- Xiaohui Yan
- School
of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing,100083, P. R. China
- Normandie
University, ULHN, LOMC UMR CNRS, 6294 Le Havre, France
| | - Qi Meng
- School
of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing,100083, P. R. China
| | | | - Lubin Wei
- School
of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing,100083, P. R. China
| |
Collapse
|
3
|
Wang S, Chen H. Enhanced dewaterability of sewage sludge by grafted cationic lignin-based flocculants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166958. [PMID: 37696410 DOI: 10.1016/j.scitotenv.2023.166958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Lignin-based flocculants are widely used for wastewater purification, but their application in sludge dewatering has not yet been documented. In this study, a novel cationic lignin-based flocculant named LS-g-CPA was prepared by grafting cationic polyacrylamide (CPA) synthesized from methacryloyloxy ethyltrimethyl ammonium chloride (DMC) and acrylamide (AM) onto sodium lignosulfonate (LS), and its roles and underlying mechanisms in sludge conditioning were investigated. The results showed that LS-g-CPA effectively improved the dewaterability of sludge, reducing the filtration resistance and filter cake moisture content of sludge from 0.61 ± 0.05 × 1012 m/kg to 0.14 ± 0.02 × 1012 m/kg and 85.64 ± 0.25 % to 76.84 ± 0.41 %, respectively. The dewatering performance of LS-g-CPA was positively correlated with the DMC/AM ratio. The quaternary ammonium groups brought by DMC disrupted the reticular structure of extracellular polymeric substances, exposing hydrophobic residues and releasing bound water. Nevertheless, the key to LS-g-CPA for improving sludge dewatering lies more in the amphoteric flocculant properties that enhance sludge flocculation and the octopus-type structure that provides good drainage channels. This study reveals that lignin-based flocculants are effective in improving the dewaterability of sludge, which provides direct evidence for their application in sludge dewatering.
Collapse
Affiliation(s)
- Shiqin Wang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
4
|
Liu C, Fu C, Li T, Zhang P, Xia Y, Wu Y, Lan Q, Li Y, Zhang Y, Gui J. CO2 capture using biochar derived from conditioned sludge via pyrolysis. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Li G, Zhong H, Yang Y, Zhu L, Liu X, Wang H. Effect of modified kaolin conditioning sludge on organic matter properties. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Feasibility of improving wastewater sludge dewaterability by combination of cationic polyacrylamide and synthetic fibers for resource utilization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Zhang Q, Cui G, He X, Wang Z, Tang T, Zhao Q, Liu Y. Effects of voltage and pressure on sludge electro-dewatering process and the dewatering mechanisms investigation. ENVIRONMENTAL RESEARCH 2022; 212:113490. [PMID: 35594958 DOI: 10.1016/j.envres.2022.113490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Electro-dewatering technology shows a good application prospect because of its high efficiency in removing water from sludge and low energy consumption, but the potential mechanisms of sludge electro-dewatering have not been investigated in depth, which seriously limits the further development and application of electro-dewatering technology. In this study, the effects of voltage and pressure on sludge electro-dewatering performance, physicochemical characteristics and extracellular polymeric substances (EPS) compositions and distributions were investigated. The spatial distributions of EPS main components, including polysaccharide (PS) and protein (PN), were characterized by a confocal laser scanning microscopy (CLSM). The experimental results showed that under the conditions of a voltage of 40 V and a pressure of 90 kPa, the moisture content of sludge was reduced from 83.15% to 53.12%, and the bound water content of sludge in the anode layer, middle layer and cathode layer were decreased significantly from 1.16 g/g dry solid (DS) to 0.20, 0.47 and 0.35 g/g DS, respectively. The PN content of EPS in anode layer was significantly lower than that in cathode layer due to the electrochemical oxidation, while the variation of PS content showed the opposite trend, which agreed with the results visualized by CLSM. Pearson's correlation coefficient and hierarchical cluster analysis revealed that PN in TB-EPS was the major factor influencing the effect of sludge electro-dewatering. This work can be helpful to understand the potential mechanisms of electro-dewatering and provide theoretical support for the further popularization and application of electro-dewatering technology.
Collapse
Affiliation(s)
- Qiming Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China
| | - Guodong Cui
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China
| | - Xiao He
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China
| | - Zheng Wang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China
| | - Tian Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China
| | - Qing Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China.
| |
Collapse
|
8
|
Xia J, Rao T, Ji J, He B, Liu A, Sun Y. Enhanced Dewatering of Activated Sludge by Skeleton-Assisted Flocculation Process. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116540. [PMID: 35682124 PMCID: PMC9180161 DOI: 10.3390/ijerph19116540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
Abstract
Sludge dewatering is the fundamental process of sludge treatment. Environmentally friendly and efficient sludge conditioning methods are the premises of sludge to achieve dehydration reduction and resource utilization. In response to sewage plant sludge dehydration, fly ash (FA), polymerized aluminum chloride (PAC), and polymer sulfate (PFS) were studied separately to determine their sludge dehydration performance, and the effects of these three conditioner composite regulations on sludge dehydration properties were studied. Compared to the sludge treated only with conditioner, the average particle size of floc increased and the organic matter content in the filtrate decreased. The sludge dewatering efficiency after the conditioning effect is better than that after conditioning a single conditioner. After PFS conditioning with fly ash, the water content and specific resistance (SRF) of the sludge cake can be reduced to 76.39% and 6.63 × 1010 m/kg, respectively. The moisture content and specific resistance (SRF) of the sludge cake can be reduced to 76.10% and 6.91 × 1010 m/kg, respectively. The pH of the sludge and filtrate changed slightly after PAC conditioning with fly ash coupling. These results indicate that fly-ash coupled with PAC and fly-ash coupled with PFS are expected to become a novel and effective environmental protection combined conditioning method for sludge dewatering.
Collapse
Affiliation(s)
- Jiahua Xia
- Nanjing Jiangbei New Area Public Utilities Holding Group Co., Ltd., Nanjing 210044, China; (J.X.); (T.R.); (J.J.); (B.H.)
| | - Ting Rao
- Nanjing Jiangbei New Area Public Utilities Holding Group Co., Ltd., Nanjing 210044, China; (J.X.); (T.R.); (J.J.); (B.H.)
| | - Juan Ji
- Nanjing Jiangbei New Area Public Utilities Holding Group Co., Ltd., Nanjing 210044, China; (J.X.); (T.R.); (J.J.); (B.H.)
| | - Bijuan He
- Nanjing Jiangbei New Area Public Utilities Holding Group Co., Ltd., Nanjing 210044, China; (J.X.); (T.R.); (J.J.); (B.H.)
| | - Ankang Liu
- Nanjing Water Purification Environmental Research Institute Co., Ltd., Nanjing 211100, China;
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China
- Correspondence:
| |
Collapse
|