1
|
Zhao Y, Wang C, Cao X, Song S, Wei P, Zhu G. Integrated environmental assessment of a diversion-project-type urban water source considering the risks of novel and legacy contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175380. [PMID: 39122036 DOI: 10.1016/j.scitotenv.2024.175380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The water diversion project is an effective engineering approach to overcome water scarcity as a water source for the area. However, the complex environmental conditions of long-distance water diversion bring many uncertainties for water security. In this study, we assessed the pollution condition and risk levels of emerging contaminants and traditional contaminants in the water and soil along a water diversion project in Tianjin. Then, we assessed the influence of eco-economic characteristics on environmental conditions and established a comprehensive assessment framework of water source sustainability by analytic hierarchy process (AHP). The results showed that excessive nutrient elements and heavy metal pollution mainly contributed to environmental problems in the water source area. Contrary to pollution assessment, the soil ecosystem was more subject to environmental pressure due to atmospheric deposition. The health risk assessment indicated that all contaminants had negligible non-carcinogenic risks for adults, with arsenic being considered a priority pollutant. The statistical analysis results indicated land use allocation was the most important factor in the environmental management of the water source area. According to the result of the integrated environmental assessment, the main characteristics of pressure zones were high pollution levels and human activity intensity. It is urgent to control agricultural pollution and allocate land use rationally for water source pressure zones. By considering the risks of traditional and emerging contaminants in water and soil, this study could support urban water source management and the sustainable development of the water diversion project.
Collapse
Affiliation(s)
- Yang Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chenchen Wang
- Chongqing Key Laboratory of Agricultural Waste Resource Utilization, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Xianghui Cao
- China Institute of Geo-Environment Monitoring, Beijing 100081, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
| | - Pei Wei
- Chongqing Field Scientific Observation and Research Station for Authentic Traditional Chinese Medicine in the Tree Gorges Reservoir Area, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Guangyu Zhu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Li T, Nie N, Miao Y, Zhao D, Liu M. Spatiotemporal distribution and inter-media transfer of polycyclic aromatic hydrocarbons in Shanghai, China: Historical patterns and future trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173938. [PMID: 38880146 DOI: 10.1016/j.scitotenv.2024.173938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/14/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) represent pervasive pollutants, posing health risks in urban environments. It is essential to comprehend the spatiotemporal distributions, composition profiles, and inter-media transfer processes of PAHs in various environmental compartments, influenced by both natural changes and anthropogenic activities. This study integrates historical and future spatiotemporally changing environmental parameters, including climate data, GDP, population data, land-use types, and hydrological variables, into the Multimedia Urban Model (MUM). This integration enables the simulation of spatiotemporal distributions and inter-media transfer fluxes of PAHs among six different media from the 2010s to the 2100s under two distinct Shared Socio-economic Pathways (SSP) scenarios in the megacity of Shanghai, China. The MUM model, featuring diverse gridded parameters, effectively captures PAH concentrations and movement across environmental compartments. Results indicate a decreasing trend in PAHs concentrations in the 2100s compared to the 2010s, with PAH concentrations in water, sediment, vegetation, and organic film covering impermeable surfaces under the SSP3-7.0 scenario higher than those of the SSP1-2.6 scenario. Low molecular weight PAHs dominate in the sediment, water, and air, whereas high molecular weight PAHs prevail in the organic film, vegetation, and soil. Sediment and soil serve as the predominant sinks for PAHs. The primary transport processes for PAH movement include air-film, air-soil, film-water, soil-air, and water-air. Almost all transfer fluxes exhibit a declining trend in future periods except for the air-film transport pathway. The principal input and removal routes for PAHs in Shanghai involve the advection of air and water. The study provides essential insights into the environmental behavior of PAHs and informs targeted pollution control in Shanghai. Additionally, it serves as a technical reference for similar pollution prediction research.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Ning Nie
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Yiyi Miao
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Dengzhong Zhao
- Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| |
Collapse
|
3
|
Pi W, Qu C, Ding Y, Li X, Liu A, Li W, De Vivo B, Fortelli A, Qi S, Albanese S. Cross-media transfer of polycyclic aromatic hydrocarbons in the Naples metropolitan area, southern Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173695. [PMID: 38834099 DOI: 10.1016/j.scitotenv.2024.173695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
At present, an in-depth knowledge of polycyclic aromatic hydrocarbons (PAHs) in the multimedia system of the urban environment remains limited. Taking the Naples metropolitan area (NMA) for instance, we simulated the cross-media transfer of PAHs using a multimedia urban model, involving air, water, soil, sediment, vegetation, and impervious film. The results indicated that the predicted PAH values in 2015 match well with their corresponding in-situ monitoring data. The PAH emission inventory and the simulated mass in various media all showed a downward trend from 2015 to 2020 due to national energy conservation policies and Corona Virus Disease 2019. The simulated mass of PAHs in the soil and sediment phases was 896.8 and 232.7 kg in 2020, respectively, contributing together to 96.7% of PAHs in the NMA. And they were identified as the greatest sinks for PAHs, and exhibited the longest retention duration, with values of PAH persistence reaching approximately 548.8 - 2,0642.3 hours. The results of transfer fluxes indicated that local emissions and atmospheric advection were the primary routes affecting the distribution of PAHs. The sensitivity analysis indicated that atmospheric advection rate was the most critical parameter for air, soil, vegetation, and film, whereas water concentration and sediment degradation rate were vital for water and sediment, respectively. This study offered valuable insights into how human activity contributes to the status and fate of PAHs in the urban environment.
Collapse
Affiliation(s)
- Wen Pi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Yang Ding
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610066, China
| | - Xiaoshui Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Ao Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wenping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Benedetto De Vivo
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China; Pegaso On-Line University, Naples 80132, Italy
| | - Alberto Fortelli
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Stefano Albanese
- Department of Earth Sciences, Environment and Resources, University of Naples Federico II, Naples 80125, Italy
| |
Collapse
|
4
|
Chen X, Wang M, Xie T, Jiang R, Chen W. Space-specific flux estimation of atmospheric chemicals from point sources to soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123831. [PMID: 38513940 DOI: 10.1016/j.envpol.2024.123831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Predicting chemical flux to soil from industrial point sources accurately at a regional scale has been a significant challenge due to high uncertainty in spatial heterogeneity and quantification. To address this challenge, we developed an innovative approach by combining California Air Resources Board Puff (CALPUFF) and mass balance models, leveraging their complementary strengths in quantitative accuracy and spatial precision. Specifically, CALPUFF was used to predict the polycyclic aromatic hydrocarbons (PAHs) flux to soil due to industrial sources. Additionally, the spatial distribution coefficient of PAHs flux (e.g., si for spatial unit i) was calculated by neural network and combined with the mass balance model to obtain the results of total PAHs fluxes, which were then combined with the results predicted by CALPUFF to effectively estimate the contribution of industrial sources to soil PAHs flux. Taking a petrochemical industry region located in Zhejiang province, China as a case study, results showed the input Phenanthrene (Phe) and Benzo(a)pyrene (BaP) fluxes predicted by CALPUFF were generally lower than those by the mass balance model, with slightly different distribution patterns. CALPUFF results, based on 36 industrial sources, partially represent those of the mass balance model, which includes all sources and pathways. It was suggested that industrial sources contributed 49%-89% and 65%-100% of soil Phe and BaP, respectively across the study area. The average Phe flux from point sources by deposition averaged 2.68 mg m-2∙a-1 in 2021, accounting for approximately 60% of the total Phe flux to soil. The average BaP flux from point sources by deposition averaged 0.0755 mg m-2∙a-1, accounting for only 0.1%-3.65% of the total BaP flux to soil. Thereby, our approach fills up a gap between the relevance to point sources and the accuracy of deposition quantification in estimating chemical flux from specific point sources to soil at a regional scale.
Collapse
Affiliation(s)
- Xinyue Chen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Tian Xie
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Rong Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
5
|
Nie N, Li T, Miao Y, Wei X, Zhao D, Liu M. Environmental fate and health risks of polycyclic aromatic hydrocarbons in the Yangtze River Delta Urban Agglomeration during the 21st century. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133407. [PMID: 38185085 DOI: 10.1016/j.jhazmat.2023.133407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Understanding the spatiotemporal distribution and behavior of Polycyclic Aromatic Hydrocarbons (PAHs) in the context of climate change and human activities is essential for effective environmental management and public health protection. This study utilized an integrated simulation system that combines land-use, hydrological, and multimedia fugacity models to predict the concentrations, transportation, and degradation of 16 priority-controlled PAHs across six environmental compartments (air, water, soil, sediment, vegetation, and impermeable surfaces) within one of the world's prominent urban agglomerations, the Yangtze River Delta Urban Agglomeration (YRDUA), under future Shared Socio-economic Pathways (SSP)-Representative Concentration Pathways (RCP) scenarios. Incremental lifetime carcinogenic risk for adults and children exposed to PAHs were also evaluated. The results show a declining trend in PAHs concentrations and associated health risks during the 21st century. Land use types, hydrological characteristics, population, and GDP, have significant correlations with the fate of PAHs. The primary removal for PAHs is determined to be driven by advection through air and water. PAHs covering on impermeable surfaces pose a relatively higher health risk compared to those in other environmental media. This study offers valuable insights into PAHs pollution in the YRDUA, aiming to ensure public health safety, with the potential for application in other urban areas.
Collapse
Affiliation(s)
- Ning Nie
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Ting Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Yiyi Miao
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Xinyi Wei
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Dengzhong Zhao
- Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| |
Collapse
|
6
|
Chen R, Tabeta S. Dynamic multimedia approach for source apportionment of polycyclic aromatic hydrocarbons. CHEMOSPHERE 2024; 350:141036. [PMID: 38151061 DOI: 10.1016/j.chemosphere.2023.141036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
This study was performed to evaluate the variable indicators of polycyclic aromatic hydrocarbons (PAHs) source apportionment by using an unsteady-state multimedia model. The identical indicators have been used in different environmental bulks for more than 20 years, which resulted in huge errors in source apportionment. Generated through four emission arrays, the diagnostic ratios for indicators revealed dimensionless OR, in air/soil and seawater/sediment reached ∼3.63 and ∼0.24 for Fla/Pyr, and for Ant/Phe the ratio was ∼0.31 and ∼0.18, and coastal OR for air/seawater was higher than the offshore, suggesting both compartmental and spatial divergences. The PCA indicated similar loading distribution and primary factors, shared by emission, atmosphere, and seawater arrays, whereas the slow transport between air/water and soil/sediment, weak degradation, and original concentration level might result in factors in soil and sediment separated or merged in dynamic conditions. The physicochemical divergence of indicators could be intensified after long-term environmental transport, misleading the source apportionment. Therefore, the result elucidated the essential evaluation of additional inorganic indicators and necessary verification by simultaneous sampling measurement on vertical compartments.
Collapse
Affiliation(s)
- Ruize Chen
- Graduate School of Frontier Sciences, the University of Tokyo, Kashiwanoha, Kashiwa, 277-8563 Japan.
| | - Shigeru Tabeta
- Graduate School of Frontier Sciences, the University of Tokyo, Kashiwanoha, Kashiwa, 277-8563 Japan
| |
Collapse
|
7
|
Chen R, Xing C, Shen G, Jones KC, Zhu Y. Indirect Emissions from Organophosphite Antioxidants Result in Significant Organophosphate Ester Contamination in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20304-20314. [PMID: 37978933 DOI: 10.1021/acs.est.3c07782] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Organophosphite antioxidants (OPAs) have been seriously neglected as potential sources of organophosphate esters (OPEs) in environments. This study utilizes a modeling approach to quantify for the first time national emissions and multimedia distributions of triphenyl phosphate (TPHP)─a well-known flame retardant─and three novel OPEs: tris(2,4-ditert-butylphenyl) phosphate (AO168═O), bis(2,4-ditert-butylphenyl) pentaerythritol diphosphate (AO626═O2), and trisnonylphenol phosphate (TNPP). Emphasis is on the quantitative assessment of OPA source in China. TPHP has 1.1-9.7 times higher emission (300 Mg/year in 2019 with half from OPA sources) than AO168═O (278 Mg/year), AO626═O2 (53 Mg/year), and TNPP (32 Mg/year), but AO168═O is predominant in environments (63-79%) except freshwaters. About 72-99% of the studied OPEs are emitted via air, with 88-99% ultimately distributed into soils as the major sink. OPA-source emissions contribute 9.5-57% and 4.7-56% of TPHP masses and concentrations (except in sediments) in different media, respectively. Both AO168═O and AO626═O2 exhibit high overall persistence ranging between 2 and 11 years. Source emissions and environmental concentrations are elevated in economically developed areas, while persistence is higher in northern areas, where precipitation and temperature are lower. This study shows the significance of the sources of OPA to OPE contamination, which supports chemical management of these substances.
Collapse
Affiliation(s)
- Rongcan Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changyue Xing
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K
| | - Ying Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- SJTU-UNIDO Joint Institute of Inclusive and Sustainable Industrial Development, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Chen R, Tabeta S. Modeling the long-term fate of polycyclic aromatic hydrocarbons (PAHs) and public health risk in Bohai Bay Sea Area, China. MARINE POLLUTION BULLETIN 2023; 190:114872. [PMID: 37002967 DOI: 10.1016/j.marpolbul.2023.114872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The target of this study was to reconstruct the historical concentration, distribution, variation, and exposure risk evaluation for EPA PAHs to the whole sea of Bohai Bay and the coastal population, by employing a specific dynamic multimedia model during 1950-2050. The unsteady-state model, driven by temporal energy activities from 1950 and sustainable scenarios based on socioeconomic development, indicated the annual emission increased by 4.6 times (from 84.8 tons to 391 tons) until 2020 and resulted in concentrations up to 5.2 times in the atmospheric compartment, and 4.9 times in seawater. Two peak concentrations in 1997 and 2014, consistent with total PAHs input revealed significant regional anthropogenic input in northern Bohai Bay (Tianjin) and southern Bohai Bay (Hebei). The peak-to-peak values of the timing concentration revealed a notably alternative increase in the south (+109.4 %-128.6 %), instead of the rapid decline in the north (-21.5 %-44.5 %). The dominant processes at air-seawater interfaces were air-seawater molecular transfer (from 38.4 % to 51.8 %), and wet deposition (from 60.5 % to 47.5 %). Under 5 shared socioeconomic pathways, the optimal scenario (SSP1) achieved a 24.7 % emission decline, an atmospheric decrease of 15.1 %-31.1 %, and 24.8 %-41.2 % mitigation in seawater during 2020-2050, and each pathway exhibited a general lessening concave in the northern developed municipality, compared with convex in the southern developing regions. The inhalation risk assessment evaluated 10 generations living on Bohai Bay coasts, with an acceptable result, while the current sustainable conceive was with meager fruition in reducing risk.
Collapse
Affiliation(s)
- Ruize Chen
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa 277-8563, Japan
| | - Shigeru Tabeta
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa 277-8563, Japan.
| |
Collapse
|
9
|
Mundo R, Matsunaka T, Iwai H, Ochiai S, Nagao S. Environmental processes and fate of PAHs at a shallow and enclosed bay: West Nanao Bay, Noto Peninsula, Japan. MARINE POLLUTION BULLETIN 2022; 184:114105. [PMID: 36115196 DOI: 10.1016/j.marpolbul.2022.114105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
From August 2019 to August 2020, particulate and dissolved polycyclic aromatic hydrocarbons concentrations (PAHs) were analyzed in the water body of West Nanao Bay, Japan, to determinate their levels, environmental pathways, and ecological risks at this remote but shallow and semi-enclosed bay. The 14 targeted PAHs were analyzed by high performance liquid chromatography-fluorescence detector. Even when water column stratifies, the summatory of 14 targeted dissolved PAHs did not follow significantly change with depth. Results agreed with our previous findings in the surface distribution at the bay and can be attributed to long retention time of the water mass of the semi-enclosed bay. Suspended solids start precipitating according to their size; with biggest particles rapidly settling in the proximities of river mouths. Partition coefficients (Kp) varied from 103 to 107, according to molecular weights. In general, highest Kp were found in the nepheloid layer. The risk quotients, RQ∑14 PAHs (NCs) (1.04-174.08), indicated that PAHs represented a very low to low environmental risks.
Collapse
Affiliation(s)
- Rodrigo Mundo
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Tetsuya Matsunaka
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan; Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake O, Nomi, Ishikawa, 923-1224, Japan.
| | - Hisanori Iwai
- Faculty of science and Engineering, Waseda University, Tokyo, Japan.
| | - Shinya Ochiai
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan; Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake O, Nomi, Ishikawa, 923-1224, Japan.
| | - Seiya Nagao
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan; Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake O, Nomi, Ishikawa, 923-1224, Japan.
| |
Collapse
|