1
|
Pourrostami Niavol K, Andaluri G, Achary MP, Suri RPS. How does carbon to nitrogen ratio and carrier type affect moving bed biofilm reactor (MBBR): Performance evaluation and the fate of antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124619. [PMID: 39987875 DOI: 10.1016/j.jenvman.2025.124619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
With the spread of antibiotic resistance genes (ARGs) in the environment, monitoring and controlling ARGs have become an emerging issue of concern in biological processes. Moving bed biofilm reactors (MBBR) have been gaining attention for application in wastewater treatment. Since the performance of MBBR depends on operational parameters and biocarriers, selection of suitable biocarriers and start-up conditions are vital for efficiency of MBBRs. This study investigates the effects of different carbon-to-nitrogen (C/N) ratios and carrier types on the fate of selected ARGs and microbial communities in four MBBR systems using two conventional (K3 and sponge biocarrier (SB)) and two modified carriers (Fe-Ca@SB and Ze-AC@SB). Results showed that the modified biocarriers achieved higher NH4-N removal and better simultaneous nitrification and denitrification (SND) performance (90%) at C/N of 20. However, as the C/N ratio decreased to 10 and 7, the performance of all bioreactors was approximately similar. Moreover, COD removal of 90% was achieved in all reactors regardless of C/N ratio and carrier type. Further studies on the fate of selected ARGs (tetA, blaTEM, ampR) showed that the C/N ratio could affect the abundance of target ARGs, especially for K3 biocarrier, with tetA being the most abundant gene. Also, as the C/N ratio decreased, intl1 was enriched using K3 and SB. However, for Ze-AC@SB, the increase in the abundance of ARGs and intl1 was the lowest making it a reliable carrier not only in MBBR performance but in the control of ARGs. Metagenomic studies showed that the C/N ratio and carrier type could alter the diversity and structure of the bacterial communities in different MBBR systems, with Proteobacteria being the most abundant phylum in all four systems.
Collapse
Affiliation(s)
- Kasra Pourrostami Niavol
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Gangadhar Andaluri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Mohan P Achary
- Department of Radiation Oncology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Rominder P S Suri
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
2
|
Li Z, Feng Q, Lu M, Zhang F, Guo R. Effects of a novel sawdust-modified carrier on performance, bioaccumulation and microbial community of sequencing batch reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122349. [PMID: 39243650 DOI: 10.1016/j.jenvman.2024.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/25/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The impact of a novel sawdust-modified carrier on the performance of aerobic sequencing batch reactor (SBR) was examined. Compared with the conventional polyethylene (PE) carrier, the sawdust-modified carrier had coarse surface and porous side wall, which was beneficial for the rapid formation of biofilm. The biomass of sawdust-modified carrier was 3.4 ± 0.7 times more than those of PE carrier at the end of this study. The biofilm gotten from suspended carrier had higher extracellular polymeric substances (EPS) concentrations than activated sludge (AS). The EPS from biofilm contained higher proportions of polysaccharides compared to those from AS. The SBR with addition of sawdust-modified carrier exhibited higher ammonia nitrogen removal efficiency (84.8%) than the one with addition of conventional PE carrier (73.1%) in a typical cycle at 12 h. The volumetric nitrification rates of modified carrier were higher than those of conventional PE carrier. High throughput sequencing revealed that sawdust-modified carriers exhibited greater microbial richness and diversity compared with traditional PE carriers. Saccharimonadales was the most predominant genus that removed organic matter under aerobic condition, whereas Nitrospira was the dominant nitrifying genus. The present study verifies the advantage of sawdust-modified carrier, which has the potential for the full-scale application in the future.
Collapse
Affiliation(s)
- Zhiwei Li
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China.
| | - Mingyi Lu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Fengyuan Zhang
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China.
| |
Collapse
|
3
|
Martin JD, Tisler S, Scheel M, Svendsen S, Anwar MZ, Zervas A, Ekelund F, Bester K, Hansen LH, Jacobsen CS, Ellegaard-Jensen L. Total RNA analysis of the active microbiome on moving bed biofilm reactor carriers under incrementally increasing micropollutant concentrations. FEMS Microbiol Ecol 2024; 100:fiae098. [PMID: 38986504 PMCID: PMC11385203 DOI: 10.1093/femsec/fiae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Micropollutants are increasingly prevalent in the aquatic environment. A major part of these originates from wastewater treatment plants since traditional treatment technologies do not remove micropollutants sufficiently. Moving bed biofilm reactors (MBBRs), however, have been shown to aid in micropollutant removal when applied to conventional wastewater treatment as a polishing step. Here, we used Total RNA sequencing to investigate both the active microbial community and functional dynamics of MBBR biofilms when these were exposed to increasing micropollutant concentrations over time. Concurrently, we conducted batch culture experiments using biofilm carriers from the MBBRs to assess micropollutant degradation potential. Our study showed that biofilm eukaryotes, in particular protozoa, were negatively influenced by micropollutant exposure, in contrast to prokaryotes that increased in relative abundance. Further, we found several functional genes that were differentially expressed between the MBBR with added micropollutants and the control. These include genes involved in aromatic and xenobiotic compound degradation. Moreover, the biofilm carrier batch experiment showed vastly different alterations in benzotriazole and diclofenac degradation following the increased micropollutant concentrations in the MBBR. Ultimately, this study provides essential insights into the microbial community and functional dynamics of MBBRs and how an increased load of micropollutants influences these dynamics.
Collapse
Affiliation(s)
- Joseph Donald Martin
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark, Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Selina Tisler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Maria Scheel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Sif Svendsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Muhammad Zohaib Anwar
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- The Center for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, 8888 University Dr. W, Burnaby, BC V5A 1S6, Canada
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Flemming Ekelund
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark, Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Carsten Suhr Jacobsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
4
|
Dong H, Tian Y, Lu J, Zhao J, Tong Y, Niu J. Bioaugmented biological contact oxidation reactor for treating simulated textile dyeing wastewater. BIORESOURCE TECHNOLOGY 2024; 404:130916. [PMID: 38823560 DOI: 10.1016/j.biortech.2024.130916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
In this study, modified polyamide fibers were used as biocarriers to enrich dense biofilms in a multi-stage biological contact oxidation reactor (MBCOR) in which partitioned wastewater treatment zone (WTZ) and bioaugmentation zone (BAZ) were established to enhance the removal of methyl orange (MO) and its metabolites while minimizing sludge yields. WTZ exhibited high biomass loading capacity (5.75 ± 0.31 g/g filler), achieving MO removal rate ranging from 68 % to 86 % under different aeration condition within 8 h in which the most dominant genus Chlorobium played an important role. In the BAZ, Pseudoxanthomonas was the dominant genus while carbon starvation stimulated the enrichment of chemoheterotrophy and aerobic_chemoheterotrophy genes thereby enhanced the microbial utilization of cell-released substrates, MO as well as its metabolic intermediates. These results revealed the mechanism bioaugmentation on MBCOR in effectively eliminating both MO and its metabolites.
Collapse
Affiliation(s)
- Hongyu Dong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China
| | - Yanbin Tong
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China.
| | - Junfeng Niu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi 832003, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
5
|
Ma J, Min Y, Su J, Huang T, Ali A, Wang Y, Li X. Simultaneous removal of ammonia nitrogen, phosphate, zinc, and phenol by degradation of cellulose in composite mycelial pellet bioreactor: Enhanced performance and community co-assembly mechanism. ENVIRONMENTAL RESEARCH 2024; 252:118780. [PMID: 38555089 DOI: 10.1016/j.envres.2024.118780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
In this experiment, the prepared tea biochar-cellulose@LDH material (TB-CL@LDH) was combined with mycelium pellets to form the composite mycelial pellets (CMP), then assembled and immobilized with strains Pseudomonas sp. Y1 and Cupriavidus sp. ZY7 to construct a bioreactor. At the best operating parameters, the initial concentrations of phosphate (PO43--P), ammonia nitrogen (NH4+-N), chemical oxygen demand (COD), zinc (Zn2+), and phenol were 22.3, 25.0, 763.8, 1.0, and 1.0 mg L-1, the corresponding removal efficiencies were 80.4, 87.0, 83.4, 91.8, and 96.6%, respectively. Various characterization analyses demonstrated that the strain Y1 used the additional carbon source produced by the strain ZY7 degradation of cellulose to enhance the removal of composite pollutants and clarified the principle of Zn2+ and PO43--P removal by adsorption, co-precipitation and biomineralization. Pseudomonas and Cupriavidus were the dominant genera according to the high-throughput sequencing. As shown by KEGG results, nitrification and denitrification genes were affected by phenol. The study offers prospects for the simultaneous removal of complex pollutants consisting of NH4+-N, PO43--P, Zn2+, and phenol.
Collapse
Affiliation(s)
- Jiayao Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
6
|
Liao Y, Li S, Ji G. Graphene oxide stimulated low-temperature denitrification activity of microbial communities in lake sediments by enhancing anabolism and inhibiting cellular respiration. CHEMOSPHERE 2024; 350:141090. [PMID: 38169199 DOI: 10.1016/j.chemosphere.2023.141090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Nitrate pollution in fresh water is becoming increasingly serious. In this study, the effects of temperature and graphene oxide materials on the potential functions of denitrification communities in lake sediments were investigated by metagenome. The addition of graphene oxide significantly affected the abundance of denitrification genes such as Nap, Nos, and enhanced the contribution of Pseudomonas, making low temperature and material addition conducive to the denitrification process. Module network implied that low temperature increased the centrality of denitrification in community functions. At low temperatures, graphene oxide enhanced community anabolism by stimulation organic carbon consumption and regulating the gene abundance in the citric acid cycle and the semi-phosphorylation Entner-Doudoroff, thus possibly stimulating extracellular polymeric substances (EPS) synthesis and secretion. In addition, graphene oxide may also regulate the transfer of reducing electrons from NADH to denitrifying enzymes by affecting the gene abundances of complex I and complex IV.
Collapse
Affiliation(s)
- Yinhao Liao
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China; Institute of Whole Process Consulting, Chongqing CISDI Engineering Consulting Co. Ltd., Chongqing, 400013, China
| | - Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Ren M, Bai Y, Su J, Min Y, Wang Y, Ali A. Immobilized bioreactor for enhanced ammonia, phosphorus, and phenol removal and effects of phenol on microbial communities, potential functions, and nitrogen metabolism. BIORESOURCE TECHNOLOGY 2024; 393:130161. [PMID: 38065515 DOI: 10.1016/j.biortech.2023.130161] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
In the present study, an immobilized bioreactor was established to remove ammonia (NH4+-N), phosphate (PO43--P), and phenol using composite mycelium spheres (CMP) as the immobilization material in combination with Pseudomonas sp. Y1. Under optimal operating conditions, the bioreactor achieved 98.07, 91.71, and 92.57 % removal of NH4+-N, PO43--P, and phenol, respectively. The results showed that the bioreactor removed PO43--P by biomineralization and co-precipitation. Phenol removal relied on a Fenton-like reaction achieved by CMP-induced quinone redox cycling. High-throughput sequencing analysis and functional gene prediction indicated that Pseudomonas was the dominant genus and that the bioreactor had much potential for nitrogen removal, respectively. In addition, phenol affected the performance of functional genes and the associated enzymes, which influenced the nitrogen metabolism process in the bioreactor. This work serves as a guideline for the development of more stable and sustainable composite pollution removal technologies and fungal-bacterial symbiotic systems.
Collapse
Affiliation(s)
- Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
8
|
Saidulu D, Agrawal S, Bhatnagar A, Gupta AK. Sulfamethoxazole removal from wastewater via anoxic/oxic moving bed biofilm reactor: Degradation pathways and toxicity assessment. BIORESOURCE TECHNOLOGY 2024; 392:129998. [PMID: 37956948 DOI: 10.1016/j.biortech.2023.129998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The effects of sulfamethoxazole (SMZ), an antibiotic commonly detected in the water environment, on the performance of a single staged anoxic/oxic moving bed biofilm reactor (A/O MBBR), was investigated. The anoxic zone played a key role in the removal of SMZ with a percentage of contribution accounting for around 85% in the overall removal. Denitrifying heterotrophic microbes present in the anoxic zone showed relatively more resistance to higher SMZ loads. It was found that in extracellular polymeric substances, protein content was increased consistently with the increase in SMZ concentration. Based on the detected biotransformation products, four degradation pathways were proposed and the toxicity was evaluated. Metagenomic analysis revealed that at higher SMZ load the activity of genera, such as Proteobacteria and Actinobacteria was significantly affected. In summary, proper design and operation of staged A/O MBBR can offer a resilient and robust treatment towards SMZ removal from wastewater.
Collapse
Affiliation(s)
- Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shivangi Agrawal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
9
|
Palanisamy V, Bosilevac JM, Barkhouse DA, Velez SE, Chitlapilly Dass S. Shotgun-metagenomics reveals a highly diverse and communal microbial network present in the drains of three beef-processing plants. Front Cell Infect Microbiol 2023; 13:1240138. [PMID: 37743870 PMCID: PMC10515220 DOI: 10.3389/fcimb.2023.1240138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
Background Multi-species biofilms pose a problem in various environments, especially food-processing environments. The diversity of microorganisms in these biofilms plays a critical role in their integrity and protection against external biotic and abiotic factors. Compared to single-species biofilms, mixed-species biofilms are more resistant to various stresses, including antimicrobials like sanitizers. Therefore, understanding the microbiome composition and diversity in biofilms and their metabolic potential is a priority when developing intervention techniques to combat foodborne pathogens in food processing environments. Methods This study aimed to describe and compare the microbiome profile of 75 drain biofilm samples obtained from five different locations (Hotscale, Hotbox, Cooler, Processing, & Grind room) of three beef-processing plants (Plant A, B & C) taken over two timepoints 2017-18 (T1) and 2021 (T2) by shotgun sequencing. Results Core microbiome analysis found Pseudomonas, Psychrobacter, and Acinetobacter to be the top three prevalent genera among the plants and locations. Alpha diversity analysis demonstrated a high diversity of microbiome present in all the plants and locations across the time points. Functional analysis showed the high metabolic potential of the microbial community with abundance of genes in metabolism, cell-adhesion, motility, and quorum sensing. Moreover, Quaternary Ammonium Compound (QAC) resistance genes were also observed, this is significant as QAC sanitizers are commonly used in many food processing facilities. Multi-functional genes such as transposases, polymerases, permeases, flagellar proteins, and Mobile Genetic Elements (MGEs) were found suggesting these are dynamic microbial communities that work together to protect themselves against environmental stresses through multiple defense mechanisms. Conclusion This study provides a framework for understanding the collective microbial network spanning a beef processing system. The results can be used to develop intervention strategies to best control these highly communicative microbial networks.
Collapse
Affiliation(s)
- Vignesh Palanisamy
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Joseph M. Bosilevac
- U. S. Department of Agriculture, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Lincoln, NE, United States
| | - Darryll A. Barkhouse
- Molecular Center of Excellence, Invisible Sentinel, bioMerieux Inc., Philadelphia, PA, United States
| | - Sarah E. Velez
- Molecular Center of Excellence, Invisible Sentinel, bioMerieux Inc., Philadelphia, PA, United States
| | | |
Collapse
|
10
|
Diaz-Vanegas C, Héry M, Desoeuvre A, Bruneel O, Joulian C, Jacob J, Battaglia-Brunet F, Casiot C. Towards an understanding of the factors controlling bacterial diversity and activity in semi-passive Fe- and As-oxidizing bioreactors treating arsenic-rich acid mine drainage. FEMS Microbiol Ecol 2023; 99:fiad089. [PMID: 37632198 DOI: 10.1093/femsec/fiad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023] Open
Abstract
Semi-passive bioreactors based on iron and arsenic oxidation and coprecipitation are promising for the treatment of As-rich acid mine drainages. However, their performance in the field remains variable and unpredictable. Two bioreactors filled with distinct biomass carriers (plastic or a mix of wood and pozzolana) were monitored during 1 year. We characterized the dynamic of the bacterial communities in these bioreactors, and explored the influence of environmental and operational drivers on their diversity and activity. Bacterial diversity was analyzed by 16S rRNA gene metabarcoding. The aioA genes and transcripts were quantified by qPCR and RT-qPCR. Bacterial communities were dominated by several iron-oxidizing genera. Shifts in the communities were attributed to operational and physiochemical parameters including the nature of the biomass carrier, the water pH, temperature, arsenic, and iron concentrations. The bioreactor filled with wood and pozzolana showed a better resilience to disturbances, related to a higher bacterial alpha diversity. We evidenced for the first time aioA expression in a treatment system, associated with the presence of active Thiomonas spp. This confirmed the contribution of biological arsenite oxidation to arsenic removal. The resilience and the functional redundancy of the communities developed in the bioreactors conferred robustness and stability to the treatment systems.
Collapse
Affiliation(s)
- Camila Diaz-Vanegas
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
- French Geological Survey (BRGM), Water, Environment, Process and Analyses Division, Orléans, France
| | - Marina Héry
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Angélique Desoeuvre
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Odile Bruneel
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Catherine Joulian
- French Geological Survey (BRGM), Water, Environment, Process and Analyses Division, Orléans, France
| | - Jérôme Jacob
- French Geological Survey (BRGM), Water, Environment, Process and Analyses Division, Orléans, France
| | | | - Corinne Casiot
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
11
|
Zhu L, Ma J, Yuan H, Deng L, Shi Z, He Q, Ke S. Effects of successional sulfadiazine exposure on biofilm in moving bed biofilm reactor: Secretion of extracellular polymeric substances, community activity and functional gene expression. BIORESOURCE TECHNOLOGY 2023; 380:129092. [PMID: 37100294 DOI: 10.1016/j.biortech.2023.129092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/07/2023] [Accepted: 04/22/2023] [Indexed: 05/14/2023]
Abstract
The effects of sulfadiazine (SDZ) on responses of biofilm in a moving bed biofilm reactor were explored with emphasis on the changes in extracellular polymeric substances (EPS) and functional genes. It was found that 3 to 10 mg/L SDZ reduced the protein (PN) and polysaccharide (PS) contents of EPS by 28.7%-55.1% and 33.3%-61.4%, respectively. The EPS maintained high ratio of PN to PS (10.3-15.1), and the major functional groups within EPS remained unaffected to SDZ. Bioinformatics analysis showed that SDZ significantly altered the community activity such as increased expression of s_Alcaligenes faecali. Totally, the biofilm held high SDZ removal rates, which were ascribed to the self-protection by secreted EPS, and genes levels upregulation of antibiotic resistance and transporter protein. Collectively, this study provides more details on the biofilm community exposure to an antibiotic and highlights the role of EPS and functional genes in antibiotic removal.
Collapse
Affiliation(s)
- Liang Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Huizhou Yuan
- School of Materials & Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lin Deng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zhou Shi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Shuizhou Ke
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
Min Y, Wang Z, Su J, Ali A, Huang T, Yang W. Simultaneous removal of ammonia nitrogen, recovery of phosphate, and immobilization of nickel in a polyester fiber with shell powder and iron carbon spheres bioreactor: Optimization and pathways mechanism. ENVIRONMENTAL RESEARCH 2023; 224:115476. [PMID: 36805352 DOI: 10.1016/j.envres.2023.115476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Composite pollutants are prevalent in wastewater, whereas, the simultaneous accomplishment of efficient nitrogen removal and resources recovery remains a challenge. In this study, a bioreactor was constructed to contain Pseudomonas sp. Y1 using polyester fiber wrapped with shell powder and iron carbon spheres, achieving ammonia nitrogen (NH4+-N) removal, phosphate (PO43--P) recovery, and nickel (Ni2+) immobilization. The optimal performance of bioreactor was average removal efficiencies of NH4+-N, PO43--P, calcium (Ca2+), and Ni2+ as 82.42, 96.67, 76.13, and 98.29% at a hydraulic retention time (HRT) of 6 h, pH of 7.0, and influent Ca2+ and Ni2+ concentrations of 100.0 and 3.0 mg L-1, respectively. The bioreactor could remove PO43--P, Ca2+, and Ni2+ by biomineralization, co-precipitation, adsorption, and lattice substitution. Moreover, microbial community analysis suggested that Pseudomonas was the predominant genus and had possessed tolerance to Ni2+ toxicity in wastewater. This study presented an effective method to synchronously remove NH4+-N, recover PO43--P, and fix heavy metals through microbially induced carbonate precipitation (MICP) and heterotrophic nitrification and aerobic denitrification (HNAD) technology.
Collapse
Affiliation(s)
- Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
13
|
Saidulu D, Srivastava A, Gupta AK. Elucidating the performance of integrated anoxic/oxic moving bed biofilm reactor: Assessment of organics and nutrients removal and optimization using feed forward back propagation neural network. BIORESOURCE TECHNOLOGY 2023; 371:128641. [PMID: 36681347 DOI: 10.1016/j.biortech.2023.128641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
A lab-scale integrated anoxic and oxic (A/O) moving bed biofilm reactor (MBBR) was investigated for the removal of organics and nutrients by varying chemical oxygen demand (COD) to NH4-N ratio (C/N ratio: 3.5, 6.75, and 10), hydraulic retention time (HRT: 6 h, 15 h, and 24 h), and recirculation ratio (R: 1, 2, and 3). The use of activated carbon coated carriers prepared from waste polyethylene material and polyurethane sponges attached to a cylindrical frame in the integrated A/O MBBR increased the attached growth biomass significantly. >95 % of COD removal was observed under the C/N ratio of 10 at an HRT of 24 h. While the low C/N ratio favored the removal of NH4-N (∼98 %) and PO43--P (∼90 %) with an optimal R of 1.75. Using the experimental dataset, to predict and forecast the performance of integrated A/O MBBR, a feed-forward-backpropagation-neural-network model was developed.
Collapse
Affiliation(s)
- Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashish Srivastava
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
14
|
Luan YN, Yin Y, Xu Y, Zhang F, Wang X, Zhao F, Xiao Y, Liu C. Simultaneous nitrification and denitrification in a novel rotating self-aerated biofilm reactor for decentralized wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 369:128513. [PMID: 36538963 DOI: 10.1016/j.biortech.2022.128513] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Decentralized wastewater pollution in rural areas has become a serious problem for the rural environment. In this study, a novel rotating self-aerated biofilm reactor was developed for decentralized wastewater treatment without any aeration equipment. After the long-term operation of 110 days, the removal efficiency reached to 96.06 % (COD), 98.06 % (NH4+-N), and 62.58 % (TN) in the last phase. Under high dissolved oxygen level, the simultaneous nitrification-denitrification (SND) maintained at a stable ratio of 62.53 % and the denitrification rates reached over 28.37 mg/L/h. With the organic loading rate increased, key nitrogen functional bacterial communities such as anoxic denitrifiers (Thiothrix, Flavobacterium, Pseudoxanthomonas, Aquimonas and Azoarcus) and aerobic denitrifiers (Hydrogenophaga, Zoogloea and Terrimonas) increased obviously. Overall, microbial analysis and nitrogen metabolism pathway indicated that an integration of SND process was achieved in this single reactor by the combined action of nitrification, denitrification and comammox without any aeration equipment.
Collapse
Affiliation(s)
- Ya-Nan Luan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Yue Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Yanming Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Feng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Fangchao Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China.
| |
Collapse
|
15
|
Zhao B, Wu Y, Wan R, Yang D, Zheng Z, Wan A. Numerical simulation and experimental research of fractal suspended carrier based on nonlinear equation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66191-66203. [PMID: 35499729 DOI: 10.1007/s11356-022-20528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
The geometric structure of the suspended carrier is an important factor that directly affects the effluent quality of the moving bed biofilm reactor, and it should be a valuable mathematical solution to solve the nonlinear equation through numerical simulation and experimental research. Therefore, this study has designed and prepared a coral-shaped fractal suspension carrier based on nonlinear equations and verified the effectiveness of the new carrier for sewage treatment through FLUENT numerical simulation and domestic sewage treatment experiments. The experimental results show that the coral-shaped fractal suspension carrier has a significant effect on the velocity, vortex distribution, and gas-phase distribution of the flow field in the reactor. The mass transfer dead area in the reactor is reduced, the number of vortices is significantly increased, and the fractal dimension of the carrier is negatively correlated with the flow velocity and pressure drop of the fluid. After stabilization, the average removal rates of COD and NH4+-N by the reactor are 89.5% and 93.21%, respectively; the effluent quality reaches the national first-class A standard; and the sewage treatment performance is good. At the same time, this research provides a preliminary research basis for the method of solving nonlinear equations through numerical simulation and experimental research.
Collapse
Affiliation(s)
- Bi Zhao
- Modern Agricultural Science and Engineering Institute, Tongji University, Shanghai, 200082, China
| | - Yunpeng Wu
- Modern Agricultural Science and Engineering Institute, Tongji University, Shanghai, 200082, China
| | - Ruyin Wan
- Modern Agricultural Science and Engineering Institute, Tongji University, Shanghai, 200082, China
- Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UK
| | - Dongke Yang
- Modern Agricultural Science and Engineering Institute, Tongji University, Shanghai, 200082, China
| | - Zhicheng Zheng
- Modern Agricultural Science and Engineering Institute, Tongji University, Shanghai, 200082, China
| | - Ajun Wan
- Modern Agricultural Science and Engineering Institute, Tongji University, Shanghai, 200082, China.
| |
Collapse
|
16
|
A Study of a Composite Biofilm Reactor for the Treatment of Mariculture Wastewater: Performance and Microbial Communities. SUSTAINABILITY 2022. [DOI: 10.3390/su14105743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mariculture wastewater is one of the main sources of saline wastewater. This study used a waterfall aeration biofilm reactor combined with a sequencing batch reactor (WABR-SBR) to treat simulated mariculture sewage. Despite the high inhibition by salinity, the reactor maintained a high removal efficiency for organic matter and ammonium nitrogen. The ammonia nitrogen removal rate was greater than 99%, while that for nitrite, which is extremely toxic to farmed animals, was greater than 80%. Fourier transform infrared spectroscopy and scanning electron microscopy showed that salinity affected the surface structure and composition of biofilms, which became compact and secreted more solute to resist the impact of salinity. High throughput 16S rRNA sequencing revealed that the main phyla in the biofilms were Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes. Metagenomic annotation of genes further indicated nitrogen metabolism pathways under high salinity. The conclusions of this study can provide a theoretical foundation for the biological treatment of high-salt wastewater and provide a technical reference for further application of the WABR-SBR composite system.
Collapse
|