1
|
Zhou X, Yang W, Lin H, Wang B, Xie M, Fang H, Zhang H, Zhang M, Teng J. Membrane fouling mechanisms in the presence of microplastics and organic matter: The unexpected mitigating role of Ca 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176446. [PMID: 39307365 DOI: 10.1016/j.scitotenv.2024.176446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Ultrafiltration (UF) is demonstrated to be highly effective in the removal of microplastics (MPs), but the presence of coexisting foulants introduces significant uncertainties into the associated membrane fouling behaviors. In this study, membrane fouling mechanisms were investigated when MPs, represented by polystyrene (PS), coexisted with typical organic foulants (sodium alginate, SA) and inorganic ions (Ca2+). Fouling tests revealed that the order of Ca2+ addition significantly impacted the fouling behavior of the SA-PS combined foulants. Specifically, the specific filtration resistance (SFR) was reduced by 40.82 % in the SA-PS-Ca2+ foulants and by 90.92 % in the SA-Ca2+-PS foulants, compared to the SA-PS foulants. X-ray photoelectron spectroscopy and density functional theory calculations indicated that sufficient cross-linking of Ca2+ with SA molecular chains in the SA-Ca2+-PS foulants, forming a large-scale 3D network that encapsulated more PS particles and resulted in larger flocs than those found in the SA-PS-Ca2+ foulants. According to extended Flory-Huggins theory, the improved filtration performance of the SA-PS combined foulants was due to substantial changes in chemical potential during their transition from gel to flocs upon Ca2+ addition. Furthermore, interfacial thermodynamic analyses suggested that increased repulsion between SA-Ca2+-PS foulants and between them and the membrane led to a looser fouling layer, significantly mitigating membrane fouling. This study elucidates the fouling mechanisms in the presence of MPs and other foulants from the perspectives of energy changes and molecular structures, providing novel insights for developing strategies to mitigate membrane fouling.
Collapse
Affiliation(s)
- Xiaoni Zhou
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Wenfa Yang
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Biyan Wang
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Mingjing Xie
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hao Fang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Meijia Zhang
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Cao DQ, Lei SC, Liu H, Jin Y, Wu YF, Cui Y, Wu R. Reverse Solute Diffusion Enhances Sludge Dewatering in Dead-End Forward Osmosis. MEMBRANES 2024; 14:196. [PMID: 39330537 PMCID: PMC11433884 DOI: 10.3390/membranes14090196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Wastewater treatment plants produce high quantities of excess sludge. However, traditional sludge dewatering technology has high energy consumption and occupies a large area. Dead-end forward osmosis (DEFO) is an efficient and energy-saving deep dewatering technology for sludge. In this study, the reverse osmosis of salt ions in the draw solution was used to change the sludge cake structure and further reduce its moisture content in cake by releasing the bound water in cell. Three salts, NaCl, KCl, and CaCl2, were added to the excess sludge feed solution to explore the roles of the reverse osmosis of draw solutes in DEFO. When the added quantities of NaCl and CaCl2 were 15 and 10 mM, respectively, the moisture content of the sludge after dewatering decreased from 98.1% to 79.7% and 67.3%, respectively. However, KCl did not improve the sludge dewatering performance because of the "high K and low Na" phenomenon in biological cells. The water flux increased significantly for the binary draw solute involving NaCl and CaCl2 compared to the single draw solute. The extracellular polymer substances in the sludge changed the structure of the filter cake to improve the formation of water channels and decrease osmosis resistance, resulting in an increase in sludge dewatering efficiency. These findings provide support for improving the sludge dewatering performance of DEFO.
Collapse
Affiliation(s)
- Da-Qi Cao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
- Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China
| | - Shi-Cheng Lei
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hui Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yan Jin
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yun-Feng Wu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Rongling Wu
- Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China
- Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China
| |
Collapse
|
3
|
Chen Y, Ren X, Huang M, Li Y. Evaluation of aquaporin based biomimetic forward osmosis membrane in terms of rejection performance for contaminants in greywater and its membrane fouling properties. CHEMOSPHERE 2023; 333:138983. [PMID: 37207899 DOI: 10.1016/j.chemosphere.2023.138983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Forward osmosis (FO) technology is regarded as an alternative to wastewater treatment due to its high permeate flux, excellent solute selectivity and low fouling tendency. In this study, two novel aquaporin based biomimetic membranes (ABMs) were used for comparison in short-term experiments to investigate the impact of membrane surface properties on greywater treatment. The impact of feed solution (FS) temperature on the filtration performance and membrane fouling behavior of ABM was further analyzed in the sequential batch experiments. Results indicated that the membranes with rough surface morphology and low zeta potential (absolute value) facilitated the adsorption of linear alklybezene sulfonates (LAS), thus improving the water flux and the rejection of Ca2+ and Mg2+. The increase in FS temperature enhanced the diffusion of organic matter and the water flux. In addition, sequential batch experiments showed that the membrane fouling layer was mainly in the form of organic and inorganic composite fouling, which was mitigated at FS temperature of 40 °C. Microbial community analysis revealed that the increase in FS temperature affected the diversity of microbial communities. More heterotrophic nitrifying bacteria were enriched in the fouling layer at FS 40 °C than at FS 20 °C. This study provides a novel strategy for employing ABM FO in greywater treatment and reuse.
Collapse
Affiliation(s)
- Yifeng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xiao Ren
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Manhong Huang
- Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
4
|
Wu X, Zhang X, Wang H, Xie Z. Smart utilisation of reverse solute diffusion in forward osmosis for water treatment: A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162430. [PMID: 36842573 DOI: 10.1016/j.scitotenv.2023.162430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Forward osmosis (FO) has been widely studied as a promising technology in wastewater treatment, but undesirable reverse solute diffusion (RSD) is inevitable in the FO process. The RSD is generally regarded as a negative factor for the FO process, resulting in the loss of draw solutes and reduced FO efficiency. Conventional strategies to address RSD focus on reducing the amount of reverse draw solutes by fabricating high selective FO membranes and/or selecting the draw solute with low diffusion. However, since RSD is inevitable, doubts have been raised about the strategies to cope with the already occurring reverse draw solutes in the feed solution, and the feasibility to positively utilise the RSD phenomenon to improve the FO process. Herein, we review the state-of-the-art applications of RSD and their benefits such as improving selectivity and maintaining the stability of the feed solution for both independent FO processes and FO integrated processes. We also provide an outlook and discuss important considerations, including membrane fouling, membrane development and draw/feed solution properties, in RSD utilisation for water and wastewater treatment.
Collapse
Affiliation(s)
- Xing Wu
- CSIRO Manufacturing, Clayton South, Victoria 3169, Australia
| | - Xiwang Zhang
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Clayton South, Victoria 3169, Australia.
| |
Collapse
|
5
|
Zhao X, Fan Y, Wang C, Su Z, Huo H, Yang X, Cai Y, Geng Z, Wang C. Multi-functional Ag@NH2-UiO-66/PAES-COOH self-supporting symmetric hybrid membrane for forward osmosis separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
6
|
Zhao Q, Zhao DL. Thermoresponsive Magnetic Ionic Liquids as Forward Osmosis Draw Solutes for Seawater Desalination. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
7
|
Teng J, Zhang H, Lin H, Lu M, Xu X, Gao T, You X. Molecular level insights into the dynamic evolution of forward osmosis fouling via thermodynamic modeling and quantum chemistry calculation: Effect of protein/polysaccharide ratios. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|