1
|
Wei Y, Abkar L, Senavirathna B, Beck SE, Mohn W, Seitcher M, Bérubé PR. Gravity-Driven Membrane Filtration with Passive Hydraulic Fouling Control for Drinking Water Treatment: Demonstration of Long-Term Performance at Full Scale. ACS ES&T WATER 2025; 5:70-80. [PMID: 39816974 PMCID: PMC11731288 DOI: 10.1021/acsestwater.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025]
Abstract
The present study evaluated the performance of a full-scale gravity-driven membrane filtration system with passive hydraulic fouling control (PGDMF) for drinking water treatment in a small community over a 3-year period. The PGDMF system consistently met the design flow and regulated water quality/performance parameters (i.e., total coliform, Escherichia coli, turbidity, and membrane integrity). The instantaneous temperature-corrected permeability (TCP) varied seasonally, being greater during the winter months. The overall TCP decreased slowly to ∼60% of the initial value by the end of 3 years, a TCP that is much greater than would have been expected without passive hydraulic fouling control. Although it was not possible to directly link the observed seasonal changes in TCP to potential seasonal changes in the biofilm microbiome, the analysis did suggest that the lower TCP during summer months was due to a greater microorganism richness in the feed and presence of filamentous, stalked, and biofilm-forming bacteria in the biofilm. Operation with higher trans-membrane pressure (i.e., ∼30 vs ∼20 mbar) and more frequent passive hydraulic fouling control (i.e., every 12 vs 24 h) enabled a greater flow to be sustained. The study demonstrated the long-term robustness and performance of GDMF with passive hydraulic fouling control for drinking water treatment.
Collapse
Affiliation(s)
- Yixin Wei
- Department
of Civil Engineering, The University of
British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada
| | - Leili Abkar
- Department
of Civil Engineering, The University of
British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada
| | - Binura Senavirathna
- Department
of Civil Engineering, The University of
British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sara E. Beck
- Department
of Civil Engineering, The University of
British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada
| | - William Mohn
- Department
of Microbiology and Immunology, The University
of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Matt Seitcher
- Nuu-Chah-Nulth
Tribal Council, 5001
Mission Road, Port Alberni, British Columbia V9Y 7M2, Canada
| | - Pierre R. Bérubé
- Department
of Civil Engineering, The University of
British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
2
|
Shemer H, Wald S, Semiat R. Challenges and Solutions for Global Water Scarcity. MEMBRANES 2023; 13:612. [PMID: 37367816 DOI: 10.3390/membranes13060612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Climate change, global population growth, and rising standards of living have put immense strain on natural resources, resulting in the unsecured availability of water as an existential resource. Access to high-quality drinking water is crucial for daily life, food production, industry, and nature. However, the demand for freshwater resources exceeds the available supply, making it essential to utilize all alternative water resources such as the desalination of brackish water, seawater, and wastewater. Reverse osmosis desalination is a highly efficient method to increase water supplies and make clean, affordable water accessible to millions of people. However, to ensure universal access to water, various measures need to be implemented, including centralized governance, educational campaigns, improvements in water catchment and harvesting technologies, infrastructure development, irrigation and agricultural practices, pollution control, investments in novel water technologies, and transboundary water cooperation. This paper provides a comprehensive overview of measures for utilizing alternative water sources, with particular emphasis on seawater desalination and wastewater reclamation techniques. In particular, membrane-based technologies are critically reviewed, with a focus on their energy consumption, costs, and environmental impacts.
Collapse
Affiliation(s)
- Hilla Shemer
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Shlomo Wald
- Wald Industries, Tor HaAviv 1, Rehovot 7632101, Israel
| | - Raphael Semiat
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
3
|
Gong W, Liu X, Wang J, Zhao Y, Tang X. A gravity-driven membrane bioreactor in treating the real decentralized domestic wastewater: Flux stability and membrane fouling. CHEMOSPHERE 2023:138948. [PMID: 37196796 DOI: 10.1016/j.chemosphere.2023.138948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Domestic wastewater in decentralized sites is capturing increasing attention. However, conventional treatment technology is not sufficiently cost-effective. In this study, real domestic wastewater was treated directly using a gravity-driven membrane bioreactor (GDMBR) at 45 mbar without backwashing or chemical cleaning, and the effects of different membrane pore sizes (0.22 μm, 0.45 μm, and 150 kDa) on flux development and contaminants removal were examined. The results showed that the flux initially decreased and then stabilized throughout long-term filtration and that the stabilized flux level of the GDMBR equipped the membranes with the pore size of 150 kDa and 0.22 μm was higher than that of 0.45 μm membrane and was in the range of 3.25-4.25 L m-2h-1. The flux stability was related to spongelike and permeable biofilm generation on the membrane surface in the GDMBR system. The presence of aeration shear on the membrane surface would cause the slough off of biofilm from the membrane surface, especially in the scenarios of GDMBR with the membrane pore size of 150 kDa and 0.22 μm, contributing to lower accumulation of extracellular polymeric substance (EPS) and smaller biofilm thickness compared to that of 0.45 μm membrane. Furthermore, the GDMBR system achieved efficient removals of chemical oxygen demand (COD), and ammonia, with average removal efficiencies of 60-80% and 70%. The high biological activity and microbial community diversity within the biofilm would improve its biodegradation and should be responsible for the efficient removal performance of contaminants. Interestingly, the membrane effluent could effectively retain total nitrogen (TN) and total phosphorus (TP). Therefore, it's feasible to adopt the GDMBR process to treat the actual domestic wastewater in the decentralized locations, and these findings could be expected to develop some simple and environmentally friendly strategies for decentralized wastewater treatment with fewer inputs.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin, 150030, PR China.
| | - Xianwu Liu
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin, 150030, PR China
| | - Jiashuo Wang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin, 150030, PR China
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin, 150030, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090, PR China.
| |
Collapse
|
4
|
Stoffel D, Derlon N, Traber J, Staaks C, Heijnen M, Morgenroth E, Jacquin C. Gravity-driven membrane filtration with compact second-life modules daily backwashed: An alternative to conventional ultrafiltration for centralized facilities. WATER RESEARCH X 2023; 18:100178. [PMID: 37250288 PMCID: PMC10214304 DOI: 10.1016/j.wroa.2023.100178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gravity-driven membrane (GDM) filtration is a strategic alternative to conventional ultrafiltration (UF) for the resilient production of drinking water via ultrafiltration when resources become scarce, given the low dependency on energy and chemicals, and longer membrane lifetime. Implementation at large scale requires the use of compact and low-cost membrane modules with high biopolymer removal capacity. We therefore evaluated (1) to what extent stable flux can be obtained with compact membrane modules, i.e., inside-out hollow fiber membranes, and frequent gravity-driven backwash, (2) whether we can reduce membrane expenses by effectively utilizing second-life UF modules, i.e., modules that have been discarded by treatment plant operators because they are no longer under warranty, (3) if biopolymer removal could be maintained when applying a frequent backwash and with second-life modules and (4) which GDM filtration scenarios are economically viable compared to conventional UF, when considering the influence of new or second-life modules, membrane lifetime, stable flux value and energy pricing. Our findings showed that it was possible to maintain stable fluxes around 10 L/m2/h with both new and second-life modules for 142 days, but a daily gravity-driven backwash was necessary and sufficient to compensate the continuous flux drop observed with compact modules. In addition, the backwash did not affect the biopolymer removal. Costs calculations revealed two significant findings: (1) using second-life modules made GDM filtration membrane investment less expensive than conventional UF, despite the higher module requirements for GDM filtration and (2) overall costs of GDM filtration with a gravity-driven backwash were unaffected by energy prices rise, while conventional UF costs rose significantly. The later increased the number of economically viable GDM filtration scenarios, including scenarios with new modules. In summary, we proposed an approach that could make GDM filtration in centralized facilities feasible and increase the range of UF operating conditions to better adapt to increasing environmental and societal constraints.
Collapse
Affiliation(s)
- Deborah Stoffel
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Jacqueline Traber
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | | | | | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
- ETH Zürich, Institute of Environmental Engineering, Zürich 8093, Switzerland
| | - Céline Jacquin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| |
Collapse
|
5
|
Hube S, Lee S, Chong TH, Brynjólfsson S, Wu B. Biocarriers facilitated gravity-driven membrane filtration of domestic wastewater in cold climate: Combined effect of temperature and periodic cleaning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155248. [PMID: 35427614 DOI: 10.1016/j.scitotenv.2022.155248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In this study, two lava stone biocarrier facilitated gravity-driven membrane (GDM) reactors were operated at ~8 °C and ~22 °C in parallel for treating primary wastewater effluent. Although the biocarrier reactor at 8 °C displayed less efficient removals of biodegradable organics than that at 22 °C, both GDM systems (without cleaning) showed comparable fouling resistance distribution patterns, accompanying with similar cake filtration constants and pore constriction constants by modelling simulation. Compared to the GDM at 8 °C, more foulants were accumulated on the GDM at 22 °C, but they presented similar soluble organics/inorganics contents and specific cake resistances. This indicated the cake layers at 22 °C may contain greater-sized foulants due to proliferation of both prokaryotes and eukaryotes, leading to a relatively less-porous nature. In the presence of periodic cleaning (at 50 °C), the cleaning effectiveness followed a sequence as ultrasonication-enhanced physical cleaning > two-phase flow cleaning > chemical-enhanced physical cleaning > physical cleaning, regardless of GDM operation temperature. However, significantly higher cake resistances were observed in the GDM system at 22 °C than those at 8 °C, because shear force tended to remove loosely-attached foulant layers and may compress the residual dense cake layer. The presence of periodic cleaning led to dissimilar dominant prokaryotic and eukaryotic communities in the cake layers as those without cleaning and in the lava stone biocarriers. Nevertheless, operation temperature did not influence GDM permeate quality, which met EU discharge standards.
Collapse
Affiliation(s)
- Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Seonki Lee
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One 06-08, S637141, Singapore; Department of Environmental Engineering, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One 06-08, S637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, S639798, Singapore
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| |
Collapse
|
6
|
Hung TS, Bilad MR, Shamsuddin N, Suhaimi H, Ismail NM, Jaafar J, Ismail AF. Confounding Effect of Wetting, Compaction, and Fouling in an Ultra-Low-Pressure Membrane Filtration: A Review. Polymers (Basel) 2022; 14:polym14102073. [PMID: 35631955 PMCID: PMC9145490 DOI: 10.3390/polym14102073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Ultra-low-pressure membrane (ULPM) filtration has emerged as a promising decentralized water and wastewater treatment method. It has been proven effective in long-term filtration under stable flux without requiring physical or chemical cleaning, despite operating at considerably lower flux. The use of ultra-low pressure, often simply by hydrostatic force (often called gravity-driven membrane (GDM) filtration), makes it fall into the uncharted territory of common pressure-driven membrane filtration. The applied polymeric membrane is sensitive to compaction, wetting, and fouling. This paper reviews recent studies on membrane compaction, wetting, and fouling. The scope of this review includes studies on those phenomena in the ULPM and how they affect the overall performance of the system. The performance of GDM systems for water and wastewater treatment is also evaluated. Finally, perspectives on the future research direction of ULPM filtration are also detailed.
Collapse
Affiliation(s)
- Tok Sheng Hung
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong, Bandar Seri Begawan BE1410, Brunei; (T.S.H.); (M.R.B.); (H.S.)
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong, Bandar Seri Begawan BE1410, Brunei; (T.S.H.); (M.R.B.); (H.S.)
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong, Bandar Seri Begawan BE1410, Brunei; (T.S.H.); (M.R.B.); (H.S.)
- Correspondence: (N.S.); (N.M.I.)
| | - Hazwani Suhaimi
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong, Bandar Seri Begawan BE1410, Brunei; (T.S.H.); (M.R.B.); (H.S.)
| | - Noor Maizura Ismail
- Faculty of Engineering, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia
- Correspondence: (N.S.); (N.M.I.)
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (J.J.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (J.J.); (A.F.I.)
| |
Collapse
|