1
|
Nguyen HD, Lee H, Lee BJ, Park J, Shon HK, Kim S, Lee S. Fluorescence spectrometric analysis for diagnosing compositional variations in effluent organic matter by chlorination and ozonation. CHEMOSPHERE 2024; 369:143846. [PMID: 39613000 DOI: 10.1016/j.chemosphere.2024.143846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
Analyzing the reactivity of organic matter to oxidants such as chlorination and ozonation is crucial for evaluating the effectiveness of water treatment systems and their potential impacts on environmental safety and human health. This study explored the changes in organic substances, specifically bovine serum albumin (BSA), humic acid sodium salt (HA), and effluent organic matter (EfOM) from a wastewater treatment facility during chlorination and ozonation. Four spectrometric techniques were employed: ultraviolet absorbance at 254 nm (UVA254), fluorescent excitation-emission matrix (EEM), synchronous fluorescence two-dimensional correlation spectroscopy (SF-2DCOS), and EEM-parallel factor integrated 2DCOS (EEM-PARAFAC-2DCOS). The findings revealed that ozone possesses superior oxidizing properties compared to chlorine, as evidenced by UVA254 and EEM analyses, resulting in more diverse structural modifications in EfOM. SF-2DCOS and EEM-PARAFAC-2DCOS provided comprehensive details on the direction and sequence of these changes, with EEM-PARAFAC-2DCOS delivering clear and intuitive insights. Protein-like and fulvic-like substances were susceptible to chlorination and ozonation, exhibiting different reaction sequences with each oxidant. Furthermore, variations in protein-like and humic-like components in actual EfOM samples may not align precisely with those in model substances, emphasizing the importance of considering specific organic matter variations in real EfOM samples compared to model substances. This research offered a deeper understanding of the reactivity and transformation of organic matter in wastewater treatment processes through simple and rapid spectroscopic methods, potentially improving the management and mitigation of undesired byproducts.
Collapse
Affiliation(s)
- Hoang Dung Nguyen
- School of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si, Gyeongbuk 37224, Republic of Korea
| | - Hosik Lee
- School of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si, Gyeongbuk 37224, Republic of Korea
| | - Byung Joon Lee
- School of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si, Gyeongbuk 37224, Republic of Korea; Department of Environmental and Safety Engineering, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si, Gyeongbuk 37224, Republic of Korea
| | - Jongkwan Park
- Department of Environment & Energy Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Sangsik Kim
- Department of Energy Chemical Engineering, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si, 37224, Republic of Korea; Convergence Research Center of Mechanical and Chemical Engineering, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si, 37224, Republic of Korea.
| | - Sungyun Lee
- School of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si, Gyeongbuk 37224, Republic of Korea; Department of Environmental and Safety Engineering, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si, Gyeongbuk 37224, Republic of Korea.
| |
Collapse
|
2
|
Kamranifar M, Ghanbari S, Fatehizadeh A, Taheri E, Azizollahi N, Momeni Z, Khiadani M, Ebrahimpour K, Ganachari SV, Aminabhavi TM. Unique effect of bromide ion on intensification of advanced oxidation processes for pollutants removal: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124136. [PMID: 38734054 DOI: 10.1016/j.envpol.2024.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Advanced oxidation processes (AOPs) have been developed to decompose toxic pollutants to protect the aquatic environment. AOP has been considered an alternative treatment method for wastewater treatment. Bromine is present in natural waters posing toxic effects on human health and hence, its removal from drinking water sources is necessary. Of the many techniques advanced oxidation is covered in this review. This review systematically examines literature published from 1997 to April 2024, sourced from Scopus, PubMed, Science Direct, and Web of Science databases, focusing on the efficacy of AOPs for pollutant removal from aqueous solutions containing bromide ions to investigate the impact of bromide ions on AOPs. Data and information extracted from each article eligible for inclusion in the review include the type of AOP, type of pollutants, and removal efficiency of AOP under the presence and absence of bromide ion. Of the 1784 documents screened, 90 studies met inclusion criteria, providing insights into various AOPs, including UV/chlorine, UV/PS, UV/H2O2, UV/catalyst, and visible light/catalyst processes. The observed impact of bromide ion presence on the efficacy of AOP processes, alongside the AOP method under scrutiny, is contingent upon various factors such as the nature of the target pollutant, catalyst type, and bromide ion concentration. These considerations are crucial in selecting the best method for removing specific pollutants under defined conditions. Challenges were encountered during result analysis included variations in experimental setups, disparities in pollutant types and concentrations, and inconsistencies in reporting AOP performance metrics. Addressing these parameters in research reports will enhance the coherence and utility of subsequent systematic reviews.
Collapse
Affiliation(s)
- Mohammad Kamranifar
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sobhan Ghanbari
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nastaran Azizollahi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Momeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharanabasava V Ganachari
- Center for Energy and Environment,School of Advanced Sciences, KLE Technological University, Hubballi-580031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment,School of Advanced Sciences, KLE Technological University, Hubballi-580031, India; University Center for Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140 413, India; Korea University, Seoul, South Korea
| |
Collapse
|
3
|
Xu J, Liu Z, Jin T, Yang X, Chen H, Chen JP. Development and testing of alginate/C 3N 4porphyrin bead as a self-initiated Fenton photocatalyst for highly efficient atrazine removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173112. [PMID: 38734090 DOI: 10.1016/j.scitotenv.2024.173112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Fenton reaction has been widely used for efficient treatment of organic wastewater. However, its applications are limited by such key factors as pH < 3. In this study, we developed, tested, and optimized an alginate/C3N4porphyrin bead (C3N4por-SA) as a recyclable photocatalyst in a photocatalysis-self-Fenton process to overcome these limitations. Porphyrin-modified C3N4 (C3N4por) was used as the H2O2 donator, while Fe(III) nodes served as the Fenton reagent. The as-prepared floating alginate/C3N4por bead utilized the light source as a driving force for the catalysis. Under visible light irradiation for 6 h, the model pollutant atrazine was degraded by 70.96 % by the optimized photocatalyst (named as C3N4por-SA-Fe1Ca5), demonstrating better photocatalytic performance than alginate/C3N4 beads. This improvement was attributed to the higher H2O2 yield from C3N4por. The alginate/C3N4por bead showed better photocatalytic activity even after several consecutive cycles and could easily be recovered for reuse. Furthermore, Fe(III)/Ca(II) bimetallic alginate bead exhibited better photocatalytic activity and a higher content of •OH radicals than the Ca(II) monometallic alginate beads, due to the ability of Fe(III) nodes to serve as a Fenton reagent. The influences of light sources, and commonly existing matters (namely SO42-, Cl-, CO32-, NO3-, and humic acid) were investigated. Moreover, the alginate/C3N4por bead demonstrated good photocatalytic performance in a simulated natural environment without the addition of extra H2O2, with an atrazine removal percentage of up to 96.3 % after 3-h irradiation. These findings indicated the great potential of alginate/C3N4por bead in practical applications.
Collapse
Affiliation(s)
- Jiajie Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zhiyu Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Tenghui Jin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xusheng Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Huihuang Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - J Paul Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
4
|
Chen Y, Yuan CJ, Xu BJ, Cao JY, Lee MY, Liu M, Wu Q, Du Y. Suppressing Organic Bromine but Promoting Bromate: Is the Ultraviolet/Ozone Process a Double-Edged Sword for the Toxicity of Wastewater to Mammalian Cells? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11649-11660. [PMID: 38872439 DOI: 10.1021/acs.est.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Brominated byproducts and toxicity generation are critical issues for ozone application to wastewater containing bromide. This study demonstrated that ultraviolet/ozone (UV/O3, 100 mJ/cm2, 1 mg-O3/mg-DOC) reduced the cytotoxicity of wastewater from 14.2 mg of pentol/L produced by ozonation to 4.3 mg of pentol/L (1 mg/L bromide, pH 7.0). The genotoxicity was also reduced from 1.65 to 0.17 μg-4-NQO/L by UV/O3. Compared with that of O3 alone, adsorbable organic bromine was reduced from 25.8 to 5.3 μg/L by UV/O3, but bromate increased from 32.9 to 71.4 μg/L. The UV/O3 process enhanced the removal of pre-existing precursors (highly unsaturated and phenolic compounds and poly aromatic hydrocarbons), while new precursors were generated, yet the combined effect of UV/O3 on precursors did not result in a significant change in toxicity. Instead, UV radiation inhibited HOBr concentration through both rapid O3 decomposition to reduce HOBr production and decomposition of the formed HOBr, thus suppressing the AOBr formation. However, the hydroxyl radical-dominated pathway in UV/O3 led to a significant increase of bromate. Considering both organic bromine and bromate, the UV/O3 process effectively controlled both cytotoxicity and genotoxicity of wastewater to mammalian cells, even though an emphasis should be also placed on managing elevated bromate. Futhermore, other end points are needed to evaluate the toxicity outcomes of the UV/O3 process.
Collapse
Affiliation(s)
- Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Chang-Jie Yuan
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Bao-Jun Xu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jie-Yu Cao
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Min-Yong Lee
- Division of Chemical Research, National Institute of Environmental Research, Seogu, Incheon 22689, Republic of Korea
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Qianyuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| |
Collapse
|
5
|
Chen M, Moher D, Rogers J, Yatom S, Thimsen E, Parker KM. Effects of Halides on Organic Compound Degradation during Plasma Treatment of Brines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5139-5152. [PMID: 38446791 DOI: 10.1021/acs.est.3c07162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Plasma has been proposed as an alternative strategy to treat organic contaminants in brines. Chemical degradation in these systems is expected to be partially driven by halogen oxidants, which have been detected in halide-containing solutions exposed to plasma. In this study, we characterized specific mechanisms involving the formation and reactions of halogen oxidants during plasma treatment. We first demonstrated that addition of halides accelerated the degradation of a probe compound known to react quickly with halogen oxidants (i.e., para-hydroxybenzoate) but did not affect the degradation of a less reactive probe compound (i.e., benzoate). This effect was attributed to the degradation of para-hydroxybenzoate by hypohalous acids, which were produced via a mechanism involving halogen radicals as intermediates. We applied this mechanistic insight to investigate the impact of constituents in brines on reactions driven by halogen oxidants during plasma treatment. Bromide, which is expected to occur alongside chloride in brines, was required to enable halogen oxidant formation, consistent with the generation of halogen radicals from the oxidation of halides by hydroxyl radical. Other constituents typically present in brines (i.e., carbonates, organic matter) slowed the degradation of organic compounds, consistent with their ability to scavenge species involved during plasma treatment.
Collapse
Affiliation(s)
- Moshan Chen
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Dillon Moher
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jacqueline Rogers
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Shurik Yatom
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540 , United States
| | - Elijah Thimsen
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
6
|
Hu W, Niu XZ, Chen H, Ye B, Liang JK, Guan YT, Wu QY. Molecular insight of dissolved organic matter and chlorinated disinfection by-products in reclaimed water during chlorination with permanganate preoxidation. CHEMOSPHERE 2024; 349:140807. [PMID: 38029937 DOI: 10.1016/j.chemosphere.2023.140807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Permanganate is a common preoxidant applied in water treatment to remove organic pollutants and to reduce the formation of disinfection by-products. However, the effect of permanganate preoxidation on the transformation of dissolved effluent organic matter (dEfOM) and on the formation of unknown chlorinated disinfection by-products (Cl-DBPs) during chlorination remains unknown at molecular level. In this work, the molecular changes of dEfOM during permanganate preoxidation and subsequent chlorination were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Permanganate preoxidation was found to decrease the DBE (double bond equivalent) and AImod (modified aromaticity index) of the dEfOM. The identity and fate of over 400 unknown Cl-DBPs during KMnO4-chlorine treatment were investigated. Most Cl-DBPs and the precursors were found to be highly unsaturated aliphatic and phenolic compounds. The Cl-DBPs precursors with lower H/C and lower O/C were preferentially removed by permanganate preoxidation. Additionally, permanganate preoxidation decreased the number of unknown Cl-DBPs by 30% and intensity of unknown Cl-DBPs by 25%. One-chlorine-containing DBPs were the major Cl-DBPs and had more CH2 groups and higher DBEw than Cl-DBPs containing two and three chlorine atoms. 60% of the Cl-DBPs formation was attributed to substitution reactions (i.e., +Cl-H, +2Cl-2H, +3Cl-3H, +ClO-H, +Cl2O3-2H). This work provides detailed molecular level information on the efficacy of permanganate preoxidation on the control of overall Cl-DBPs formation during chlorination.
Collapse
Affiliation(s)
- Wei Hu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xi-Zhi Niu
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Huan Chen
- Department of Environmental Engineering and Earth Science, Clemson University, SC, 29634, USA
| | - Bei Ye
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jun-Kun Liang
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yun-Tao Guan
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qian-Yuan Wu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Zeng B, Tao B, Pan Z, Shen L, Zhang J, Lin H. A low-cost and sustainable solution for nitrate removal from secondary effluent: Macroporous ion exchange resin treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119142. [PMID: 37804631 DOI: 10.1016/j.jenvman.2023.119142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Macroporous ion exchange resin has excellent selectivity to nitrogen (N), phosphorus (P) and partially soluble refractory organic compounds contained in the secondary effluent of wastewater treatment plants (WWTP). In this study, macroporous ion exchange resins were chosen as an alternative to single biochemical nitrogen removal processes. Various conditions were examined to optimize adsorption performance, and the adsorption mechanism was explored through isotherm fitting, thermodynamic parameter calculation, and kinetic analysis. The experiment demonstrated that the resin exhibited strong selectivity for nitrate (NO3-) and achieved an equilibrium adsorption amount of 9.8924 mg/g and an equilibrium adsorption time of 60 min at 25 °C. The resin denitrification pilot plant demonstrated stable operation for two months and achieved COD<20 mg/L, TN < 1.5 mg/L, and NH4+-N<0.5 mg/L. The removal rates of COD, TP, NH4+-N, NO3--N, and TN were 41.65%, 42.96%, 55.37%, 91.8%, and 90.81%, respectively. After the resin was regenerated, the removal rates of NO3--N, TN and the regeneration recovery rate were above 90%. Through cost analysis, the treatment cost of the pilot plant is only 0.104 $/m3. This study presents a practical, low-cost, and efficient treatment method for the deep treatment of secondary effluent from WWTP in practical engineering, providing new ideas and theoretical guidance.
Collapse
Affiliation(s)
- Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bingchi Tao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jianzhen Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
8
|
He H, Sun N, Li L, Ai J, Zhou H, Yang X, Yang X, Wang D, Zhang W. Effects of dissolved organic matter removal and molecular transformation in different water treatment processes on formation of disinfection byproducts. WATER RESEARCH 2023; 245:120626. [PMID: 37713793 DOI: 10.1016/j.watres.2023.120626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Alterations in molecular composition of dissolved organic matter (DOM) during water treatments can influence the composition and toxicity of disinfection by-products (DBPs) in subsequent chlorination disinfection process. In this study, the impacts of DOM composition after various water treatment techniques (coagulation, adsorption, nanofiltration, biological aerated filter (BAF), and their integrated processes) on the generation mechanisms of DBPs were comprehensively explored by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in combination with GC-MS and LC-MS analysis. The results indicated that coagulation preferentially removed unsaturated (low H/C) and oxidized (high O/C) compounds, whereas adsorption was prone to remove the reduced (low O/C) component that was more reactive with chlorine, leading to lower yields (μg DBP/mg DOC) of trihalomethanes (THMs) and haloacetic acids (HAAs) during subsequent chlorination. The coagulation-adsorption technique exhibited a relatively high removal of both known and unknown DBPs, demonstrating that coagulation and adsorption were complementary for DOM removal at the molecular level. Nanofiltration selectively removed molecules with relatively high O/C, however, those with very low O/C that were more reactive with chlorine could pass through the nanofiltration membrane, resulting in the highest yields of THMs and HAAs. Although BAF was inefficient in removing DBPs precursors, it could convert molecules with low degree of oxidation and unsaturation into highly oxidized and unsaturated ones, thereby significantly enhancing the removal of DBPs precursors in the subsequent coagulation-adsorption process. These findings are instrumental in developing and selecting more effective techniques to minimize the formation of DBPs in water treatment.
Collapse
Affiliation(s)
- Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Niannian Sun
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Hao Zhou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xiaoyin Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xiaofang Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
9
|
Shan P, Lin J, Zhai Y, Dong S, How ZT, Qin R. Transformation and toxicity studies of UV filter diethylamino hydroxybenzoyl hexyl benzoate in the swimming pools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163498. [PMID: 37068670 DOI: 10.1016/j.scitotenv.2023.163498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023]
Abstract
Diethylamino hydroxybenzoyl hexyl benzoate (DHHB), an ultraviolet (UV) filter, can be found in sunscreens and other personal care products and thus can be introduced into swimming pools through the swimmers. In outdoor pools, DHHB will inevitably interact with free chlorine and sunlight. Therefore, the mechanism of solar‑chlorine chemical transformation of DHHB, as well as the environmental risk, were investigated in this work. In chlorinated with solar (Cl + solar) process, free chlorine was the dominant contributor to 85% of the DHHB degradation, while hydroxyl radicals and reactive chlorine species contributed only 15% because of low free radical generation and fast DHHB and free chlorine reaction rates. Scavenging matrices, such as Cl-, NH4+, and dissolved organic matter (DOM), inhibited the degradation of DHHB in the Cl + solar process, while Br-, HCO3-, NO3-, and urea promoted DHHB degradation. DHHB degradation was inhibited in tap water swimming pool samples, while it was enhanced in seawater pool samples by the Cl + solar process. Seven transformation by-products (TBPs) including mono-, dichlorinated, dealkylate, and monochloro-hydroxylated TBPs were identified. Three degradation pathways, chlorine substitution, chlorine and hydroxyl substitution, and dealkylation were proposed for DHHB transformation in the Cl + solar process. Both Quantitative structure-activity relationship and Aliivibrio fischeri toxicity tests demonstrated increased toxicity for the chlorinated TBPs. A risk assessment of the DHHB and its TBPs suggested that both DHHB and its chlorinated TBPs pose a significant health risk.
Collapse
Affiliation(s)
- Panduo Shan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou, Hainan 570228, PR China
| | - Jiayi Lin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou, Hainan 570228, PR China
| | - Yanbo Zhai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou, Hainan 570228, PR China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, PR China
| | - Zuo Tong How
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou, Hainan 570228, PR China
| | - Rui Qin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
10
|
Wu XN, Yuan CJ, Huo ZY, Wang TT, Chen Y, Liu M, Wang WL, Du Y, Wu QY. Reduction of byproduct formation and cytotoxicity to mammalian cells during post-chlorination by the combined pretreatment of ferrate(VI) and biochar. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131935. [PMID: 37385095 DOI: 10.1016/j.jhazmat.2023.131935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/28/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Ferrate [Fe(VI)] can efficiently degrade various pollutants in wastewater. Biochar application can reduce resource use and waste emission. This study investigated the performance of Fe(VI)/biochar pretreatment to reduce disinfection byproducts (DBPs) and cytotoxicity to mammalian cells of wastewater during post-chlorination. Fe(VI)/biochar was more effective at inhibiting the cytotoxicity formation than Fe(VI) alone, reducing the cytotoxicity from 12.7 to 7.6 mg-phenol/L. The concentrations of total organic chlorine and total organic bromine decreased from 277 to 130 μg/L and from 51 to 39 μg/L, compared to the samples without pretreatment. Orbitrap ultra-high resolution mass spectrometry revealed that the number of molecules of DBPs decreased substantially from 517 to 229 by Fe(VI)/biochar, with the greatest reduction for phenols and highly unsaturated aliphatic compounds. In combination with the substantial reduction of 1Cl-DBPs and 2Cl-DBPs, 1Br-DBPs and 2Br-DBPs were also reduced. Fluorescence excitation-emission matrix coupled with parallel factor analysis suggested that fulvic acid-like substances and aromatic amino acid was obviously reduce likely due to the enhanced oxidation of Fe(IV)/Fe(V) produced by Fe(VI)/biochar and adsorption of biochar. Furthermore, the DBPs generated by electrophilic addition and electrophilic substitution of precursors were reduced. This study shows that Fe(VI)/biochar pretreatment can effectively reduce cytotoxicity formation during post-chlorination by transforming DBPs and their precursors.
Collapse
Affiliation(s)
- Xiao-Nan Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Chang-Jie Yuan
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Zheng-Yang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Ting-Ting Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
11
|
He H, Xu H, Li L, Yang X, Fu Q, Yang X, Zhang W, Wang D. Molecular transformation of dissolved organic matter and the formation of disinfection byproducts in full-scale surface water treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156547. [PMID: 35688238 DOI: 10.1016/j.scitotenv.2022.156547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matters (DOM) have important effects on the performance of surface water treatment processes and may convert into disinfection by-products (DBPs) during disinfection. In this work, the transformation of DOM and the chlorinated DBPs (Cl-DBPs) formation in two different full-scale surface water treatment processes (process 1: prechlorination-coagulation-precipitation-filtration; process 2: coagulation-precipitation-post-disinfection-filtration) were comparatively investigated at molecular scale. The results showed that coagulation preferentially removed unsaturated (H/C < 1.0 and DBE > 17) and oxidized (O/C > 0.5) compounds containing more carboxyl groups. Therefore, prechlorination produced more Cl-DBPs with H/C < 1.0 and O/C > 0.5 than post-disinfection. However, the algal in the influent produced many reduced molecules (O/C < 0.5) without prechlorination, and these compounds were more reactive with disinfectants. Sand filtration was ineffective in DOM removal, while microorganisms in the filter produced high molecular weight (MW) substances that were involved in the Cl-DBPs formation, causing the generation of higher MW Cl-DBPs under post-disinfection. Furthermore, the CHO molecules with high O atom number and the CHON molecules containing one N atom were the main Cl-DBPs precursors in both surface water treatment processes. In consideration of the putative Cl-DBPs precursors and their reaction pathways, the precursors with higher unsaturation degree and aromaticity were prone to produce Cl-DBPs through addition reactions, while that with higher saturation degree tended to form Cl-DBPs through substitution reactions. These findings are useful to optimize the treatment processes to ensure the safety of water quality.
Collapse
Affiliation(s)
- Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Hui Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Xiaofang Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China
| | - Qinglong Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Xiaoyin Yang
- Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China.
| | - Dongsheng Wang
- Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, Zhejiang, China; Department of Environmental Engineering, Zhejiang university, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
12
|
Lai X, Huang N, Pillai SC, Sarmah AK, Li Y, Wang G, Wang H. Formation and transformation of reactive species in the Fe 2+/peroxydisulfate/Cl - system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115219. [PMID: 35537272 DOI: 10.1016/j.jenvman.2022.115219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The influence of Cl- on the formation mechanism of active components is often neglected in the Fe2+/peroxydisulfate (PDS) system containing a large amount of ferryl ion reactive specie (Fe(Ⅳ)). In the current investigation, the effects of Cl- concentration on the removal of methyl phenyl sulfoxide (PMSO), the formation of methyl phenyl sulfone (PMSO2), the transformation of reactive species and oxidation products were investigated under different reaction conditions that included Fe2+ dosage, PDS dosage, and pH0. The results showed that Cl- complexing Fe2+ increased the formation path of sulfate radical (SO4·-) in the Fe2+/PDS system. Fe2+ dosage and pH0 value affected the content and morphology of Fe2+-Cl- complex, thus affecting the composition of reactive species. According to the experiment of free radical steady-state concentration, it was found that low concentration of Cl- reacted with SO4·- and increased the steady-state concentration of chlorine radicals (8.09 × 10-13 M [·Cl]ss at 1.41 mM Cl-), while at high concentration of Cl-, the contents of SO4·-, hydroxyl radical (·OH) and dichloride anion radicals (Cl2·-) increased and the contents of Fe(Ⅳ) and ·Cl decreased. ·Cl had strong reactivity with PMSO, and PMSO and its oxidation products were chlorinated under the combined action of ·Cl and Cl2·-. This work reveals the reaction mechanism and environmental application risks of Fe2+/PDS technology and lays the groundwork for subsequent industrial application of Fe2+/PDS system.
Collapse
Affiliation(s)
- Xiaojun Lai
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Nuoyi Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group and the Health and Biomedical (HEAL) Research Centre, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Yang Li
- College of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Guangwen Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
13
|
Luo C, Li M, Cheng X, Wu D, Tan F, Li Z, Chen Y, Yu F, Ma Q. Degradation of iopamidol by UV 365/NaClO: Roles of reactive species, degradation mechanism, and toxicology. WATER RESEARCH 2022; 222:118840. [PMID: 35858527 DOI: 10.1016/j.watres.2022.118840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The degradation of iopamidol (IPM) was investigated using a UV365/NaClO system. The reactive species (HO·, ClO·, ozone, Cl·, and Cl2-·) in the system were identified, and the changing trends of the percentage contributions of these reactive species to IPM removal under various conditions were systematically evaluated. The results showed that ClO· and HO· played the most significant roles in the apparent pseudo-first-order rate constants of IPM degradation (kobs, min-1) in the control experiment, and their percentage contributions to kobs were 41.31% and 34.45%, respectively. In addition, Cl· and Cl2-· together contributed 22% to the kobs. Furthermore, the contribution of ozone to the IPM removal could be neglected. The concentrations of these species increased significantly when the concentration of NaClO was increased from 50 µM to 200 µM, while the percentage contribution of ClO· to kobs was greatly increased. The concentrations and percentage contributions of HO· and ClO· decreased significantly as the solution pH increased from 5 to 9, with Cl2-· playing a greater role in the degradation of IPM under alkaline conditions. While Cl- or HCO3-/CO32- significantly promoted the generation of Cl2-· or CO3-·, neither had an obvious effect on kobs, suggesting that Cl2-· and CO3-· should have a certain reactivity with IPM. Compared with that of Cl2-·, the percentage contribution of ClO· and Cl· to kobs was more likely to be inhibited by NOM. In addition, the organic and inorganic oxidation products of IPM were detected. The oxidation mechanisms of IPM degradation in the UV365/NaClO system, such as the H-extraction reaction, deiodination, substitution reaction, amide hydrolysis, and amine oxidation, were proposed according to the obtained 15 organic products. No effect on acute toxicity towards Vibrio fischeri and Photobacterium phosphoreum was detected during the oxidation of IPM by the UV365/NaClO system. Furthermore, the engineering feasibility of the oxidation system was demonstrated, by the effective degradation of IPM in actual water. However, HOI rapidly accumulated during the removal of IPM in the UV365/NaClO system, which poses certain environmental risks and will needs to be investigated.
Collapse
Affiliation(s)
- Congwei Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Ming'an Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Zhiquan Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Yongkai Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Fan Yu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Qiao Ma
- National Engineering Lab of Coal-Fired Pollution Emission Reduction, School of Energy and Power Engineering, Shandong University, Jinan 250061, P. R. China
| |
Collapse
|