1
|
Tang Q, Moeskjær S, Cotton A, Dai W, Wang X, Yan X, Daniell TJ. Organic fertilization reduces nitrous oxide emission by altering nitrogen cycling microbial guilds favouring complete denitrification at soil aggregate scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174178. [PMID: 38917905 DOI: 10.1016/j.scitotenv.2024.174178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Agricultural management practices can induce changes in soil aggregation structure that alter the microbial nitrous oxide (N2O) production and reduction processes occurring at the microscale, leading to large-scale consequences for N2O emissions. However, the mechanistic understanding of how organic fertilization affects these context-dependent small-scale N2O emissions and associated key nitrogen (N) cycling microbial communities is lacking. Here, denitrification gas (N2O, N2) and potential denitrification capacity N2O/(N2O + N2) were assessed by automated gas chromatography in different soil aggregates (>2 mm, 2-0.25 and <0.25 mm), while associated microbial communities were assessed by sequencing and qPCR of N2O-producing (nirK and nirS) and reducing (nosZ clade I and II) genes. The results indicated that organic fertilization reduced N2O emissions by enhancing the conversion of N2O to N2 in all aggregate sizes. Moreover, potential N2O production and reduction hotspots occurred in smaller soil aggregates, with the degree depending on organic fertilizer type and application rate. Further, significantly higher abundance and diversity of nosZ clades relative to nirK and nirS revealed complete denitrification promoted through selection of denitrifying communities at microscales favouring N2O reduction. Communities associated with high and low emission treatments form modules with specific sequence types which may be diagnostic of emission levels. Taken together, these findings suggest that organic fertilizers reduced N2O emissions through influencing soil factors and patterns of niche partitioning between N2O-producing and reducing communities within soil aggregates, and selection for communities that overall are more likely to consume than emit N2O. These findings are helpful in strengthening the ability to predict N2O emissions from agricultural soils under organic fertilization as well as contributing to the development of net-zero carbon strategies for sustainable agriculture.
Collapse
Affiliation(s)
- Quan Tang
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Sara Moeskjær
- Microbiology to Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Anne Cotton
- Microbiology to Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Department of Earth and Environmental Sciences, The University of Manchester, Williamson Building, Manchester M13 9PY, UK; Manchester Institute of Biotechnology, The University of Manchester, John Garside Building, 131 Princess Street, Manchester M1 7DN, UK
| | - Wenxia Dai
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xiaozhi Wang
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tim J Daniell
- Microbiology to Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
2
|
Nwoba ST, Carere CR, Wigley K, Baronian K, Weaver L, Gostomski PA. Using RNA-Stable isotope probing to investigate methane oxidation metabolites and active microbial communities in methane oxidation coupled to denitrification. CHEMOSPHERE 2024; 357:142067. [PMID: 38643845 DOI: 10.1016/j.chemosphere.2024.142067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The active denitrifying communities performing methane oxidation coupled to denitrification (MOD) were investigated using samples from an aerobic reactor (∼20% O2 and 2% CH4) and a microaerobic reactor (2% O2, 2% CH4) undertaking denitrification. The methane oxidation metabolites excreted in the reactors were acetate, methanol, formate and acetaldehyde. Using anaerobic batch experiments supplemented with exogenously supplied 13C-labelled metabolites, the active denitrifying bacteria were identified using 16S rRNA amplicon sequencing and RNA-stable isotope probing (RNA-SIP). With the aerobic reactor (AR) samples, the maximum NO3- removal rates were 0.43 mmol g-1 d-1, 0.40 mmol g-1 d-1, 0.33 mmol g-1 d-1 and 0.10 mmol g-1 d-1 for exogenously supplied acetate, formate, acetaldehyde and methanol batch treatments respectively, while with the microaerobic reactor (MR) samples, the maximum NO3- removal rates were 0.41 mmol g-1 d-1, 0.33 mmol g-1 d-1, 0.38 mmol g-1 d-1 and 0.14 mmol g-1 d-1 for exogenously supplied acetate, formate, acetaldehyde and methanol batch treatments respectively. The RNA-SIP experiments with 13C-labelled acetate, formate, and methanol identified Methyloversatilis, and Hyphomicrobium as the active methane-driven denitrifying bacteria in the AR samples, while Pseudoxanthomonas, Hydrogenophaga and Hyphomicrobium were the active MOD bacteria in the MR samples. Collectively, all the data indicate that formate is a key cross-feeding metabolite excreted by methanotrophs and consumed by denitrifiers performing MOD.
Collapse
Affiliation(s)
- Sunday T Nwoba
- Dept. of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Carlo R Carere
- Dept. of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Kathryn Wigley
- Dept. of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Kim Baronian
- Dept. of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Peter A Gostomski
- Dept. of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
3
|
Zhan M, Zeng W, Wu C, Chen G, Meng Q, Hao X, Peng Y. Impact of organic carbon on sulfide-driven autotrophic denitrification: Insights from isotope fractionation and functional genes. WATER RESEARCH 2024; 255:121507. [PMID: 38537490 DOI: 10.1016/j.watres.2024.121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/24/2024]
Abstract
Additional organics are generally supplemented in the sulfide-driven autotrophic denitrification system to accelerate the denitrification rate and reduce sulfate production. In this study, different concentrations of sodium acetate (NaAc) were added to the sulfide-driven autotrophic denitrification reactor, and the S0 accumulation increased from 7.8% to 100% over a 120-day operation period. Batch experiments revealed a threefold increase in total nitrogen (TN) removal rate at an Ac--C/N ratio of 2.8 compared to a ratio of 0.5. Addition of organic carbon accelerated denitrification rate and nitrite consumption, which shortened the emission time of N2O, but increased the N2O production rate. The lowest N2O emissions were achieved at the Ac--C/N ratio of 1.3. Stable isotope fractionation is a powerful tool for evaluating different reaction pathways, with the 18ε/15ε values in nitrate reduction ranging from 0.5 to 1.0. This study further confirmed that isotope fractionation can reveal denitrifying nutrient types, with the 18ε (isotopic enrichment factor of oxygen)/15ε (isotopic enrichment factor of nitrogen) value approaching 1.0 for autotrophic denitrification and 0.5 for heterotrophic denitrification. Additionally, the 18ε/15ε values can indicate changes in nitrate reductase. There is a positive correlation between the 18ε/15ε values and the abundance of the functional gene napA, and a negative correlation with the abundance of the gene narG. Moreover, 18ε and 15ε were associated with changes in kinetic parameters during nitrate reduction. In summary, the combination of functional gene analysis and isotope fractionation effectively revealed the complexities of mixotrophic denitrification systems, providing insights for optimizing denitrification processes.
Collapse
Affiliation(s)
- Mengjia Zhan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Congcong Wu
- Technology R&D Center of Beijing Drainage Group Co.,Ltd, Beijing 100124, China
| | - Gangxin Chen
- Technology R&D Center of Beijing Drainage Group Co.,Ltd, Beijing 100124, China
| | - Qingan Meng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xiaojing Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Liu Y, Xu L, Su J, Ali A, Huang T, Wang Y, Zhang P. Microbially driven Fe-N cycle: Intrinsic mechanisms, enhancement, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168084. [PMID: 37924885 DOI: 10.1016/j.scitotenv.2023.168084] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/21/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
The iron‑nitrogen (FeN) cycle driven by microbes has great potential for treating wastewater. Fe is a metal that is frequently present in the environment and one of the crucial trace elements needed by microbes. Due to its synergistic role in the microbial N removal process, Fe goes much beyond the essential nutritional needs of microorganisms. Investigating the mechanisms behind the linked Fe-N cycle driven by microbes is crucial. The Fe-N cycle is frequently connected with anaerobic ammonia oxidation (anammox), nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), Feammox, and simultaneous nitrification denitrification (SND), etc. Although the main mechanisms of Fe-mediated biological N removal may vary depending on the valence state of the Fe, their similar transformation pathways may provide information on the study of certain element-microbial interactions. This review offers a thorough analysis of the facilitation effect and influence of Fe on the removal of nitrogenous pollutants in various biological N removal processes and summarizes the ideal Fe dosing. Additionally, the synergistic mechanisms of Fe and microbial synergistic N removal process are elaborated, covering four aspects: enzyme activity, electron transfer, microbial extracellular polymeric substances (EPS) secretion, and microbial community interactions. The methods to improve biological N removal based on the intrinsic mechanism were also discussed, with the aim of thoroughly understanding the biological mechanisms of Fe in the microbial N removal process and providing a reference and thinking for employing Fe to promote microbial N removal in practical applications.
Collapse
Affiliation(s)
- Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Peng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
5
|
Wang W, Zhang J, Li L, Zheng T. Evaluation of packing materials for thermophilic biofilter by refined evaluation scheme and application in the treatment of SO 2 with high temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119265. [PMID: 37837765 DOI: 10.1016/j.jenvman.2023.119265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The selection of packing materials is essential to maintaining biofilter performance in waste gas treatment. In this study, 12 types of packing materials were evaluated to determine the most suitable for the SO2 removal by a thermophilic biofilter. Scanning electron microscopy and the Baunauer-Emmett-Teller equation were utilized to identify the texture of the tested packing materials, while Fourier transform infrared spectroscopy and X-ray diffraction were applied to analyze the surface functional groups and crystal structures, respectively. Characteristics were accompanied by economic considerations. Results showed that the polyurethane sponge had better porous structure and water retention than other packing materials. In terms of microbial growth and carrier economy, it was chosen for the biofilter used to treat SO2. The performance of a full-scale thermophilic biofilter with polyurethane sponge as the packing material was investigated for the purification of SO2-containing gases at an inlet temperature of 55 °C. The biofilter effectively removed SO2 at an average removal rate of 93.36%. Thermophilic bacteria and sulfur-oxidizing bacteria, e.g., Bacillus thermophilus, could attached growth on the surface of selected packing materials and exhibited degradation activity. This study provides an effective and feasible method of packing material selection for biological waste gas treatment.
Collapse
Affiliation(s)
- Wenwen Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jingying Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Tianlong Zheng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Sun Q, Fang YK, Liu WZ, Xie N, Dong H, Guadie A, Liu Y, Cheng HY, Wang AJ. Synergistic between autotrophic and heterotrophic microorganisms for denitrification using bio-S as electron donor. ENVIRONMENTAL RESEARCH 2023; 231:116047. [PMID: 37149031 DOI: 10.1016/j.envres.2023.116047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
In recent years, biological sulfur (bio-S) was employed in sulfur autotrophic denitrification (SAD) in which autotrophic Thiobacillus denitrificans and heterotrophic Stenotrophomonas maltophilia played a key role. The growth pattern of T.denitrificans and S.maltophilia exhibited a linear relationship between OD600 and CFU when OD600 < 0.06 and <0.1, respectively. When S.maltophilia has applied alone, the NorBC and NosZ were undetected, and denitrification was incomplete. The DsrA of S.maltophilia could produce sulfide as an alternative electron donor for T.denitrificans. Even though T.denitrificans had complete denitrification genes, its efficiency was low when used alone. The interaction of T.denitrificans and S.maltophilia reduced nitrite accumulation, leading to complete denitrification. A sufficient quantity of S.maltophilia may trigger the autotrophic denitrification activity of T.denitrificans. When the colony-forming units (CFU) ratio of S.maltophilia to T.denitrificans was reached at 2:1, the highest denitrification performance was achieved at 2.56 and 12.59 times higher than applied alone. This research provides a good understanding of the optimal microbial matching for the future application of bio-S.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ying-Ke Fang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450002, PR China
| | - Wen-Zong Liu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Nan Xie
- Norendar International Ltd., Shijiazhuang, 050011, PR China
| | - Heng Dong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Awoke Guadie
- Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch 21, Ethiopia
| | - Ying Liu
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, PR China
| | - Hao-Yi Cheng
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
7
|
Yao K, Huang X, Dong W, Wang F, Liu X, Yan Y, Qu Y, Fu Y. Changes of nitrogen and phosphorus removal pattern caused by alternating aerobic/anoxia from the perspective of microbial characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68863-68876. [PMID: 37129825 DOI: 10.1007/s11356-023-27302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
The purpose of this study was to compare the impact of different numbers of alternating aerobic/anoxic (A/O) cycles on pollutant removal. Three sequential batch reactors (SBRs) with varying numbers of alternating A/O cycles were established. Under the tertiary anoxic operating conditions, the removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) were 88.73%, 89.56%, 72.15%, and 77.61%, respectively. Besides, alternating A/O affected the dominant microbial community relative abundance (Proteobacteria and Bacteroidetes) and increased microbial richness and diversity. It also increased the relative abundance of aerobic denitrifying, heterotrophic nitrifying, and denitrifying phosphorus removal bacteria to change N and P removal patterns. Furthermore, the abundance of carbohydrate metabolism and amino acid metabolism was improved by alternating A/O to improve organic matter and TN removal.
Collapse
Affiliation(s)
- Kai Yao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Fupeng Wang
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin, 130021, China
| | - Xueyong Liu
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin, 130021, China
- Urban and Rural Water Environment Technology R&D Center, China Communications Construction Co. Ltd, Jilin, 130021, China
| | - Yu Yan
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin, 130021, China
- Urban and Rural Water Environment Technology R&D Center, China Communications Construction Co. Ltd, Jilin, 130021, China
| | - Yanhui Qu
- China Urban and Rural Holdings Group Co. Ltd, Beijing, 100029, China
| | - Yicheng Fu
- State Key Laboratory of Simulation and Regulation of River Basin Water Cycle, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| |
Collapse
|
8
|
Zhang Q, Xu X, Zhang R, Shao B, Fan K, Zhao L, Ji X, Ren N, Lee DJ, Chen C. The mixed/mixotrophic nitrogen removal for the effective and sustainable treatment of wastewater: From treatment process to microbial mechanism. WATER RESEARCH 2022; 226:119269. [PMID: 36279615 DOI: 10.1016/j.watres.2022.119269] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Biological nitrogen removal (BNR) is one of the most important environmental concerns in the field of wastewater treatment. The conventional BNR process based on heterotrophic nitrogen removal (HeNR) is suffering from several limitations, including external carbon source dependence, excessive sludge production, and greenhouse gas emissions. Through the mediation of autotrophic nitrogen removal (AuNR), mixed/mixotrophic nitrogen removal (MixNR) offers a viable solution to the optimization of the BNR process. Here, the recent advance and characteristics of MixNR process guided by sulfur-driven autotrophic denitrification (SDAD) and anammox are summarized in this review. Additionally, we discuss the functional microorganisms in different MixNR systems, shedding light on metabolic mechanisms and microbial interactions. The significance of MixNR for carbon reduction in the BNR process has also been noted. The knowledge gaps and the future research directions that may facilitate the practical application of the MixNR process are highlighted. Overall, the prospect of the MixNR process is attractive, and this review will provide guidance for the future implementation of MixNR process as well as deciphering the microbially metabolic mechanisms.
Collapse
Affiliation(s)
- Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Ruochen Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Room 1433, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
9
|
Wang C, Liu Y, Huang M, Xiang W, Wang Z, Wu X, Zan F, Zhou T. A rational strategy of combining Fenton oxidation and biological processes for efficient nitrogen removal in toxic coking wastewater. BIORESOURCE TECHNOLOGY 2022; 363:127897. [PMID: 36075350 DOI: 10.1016/j.biortech.2022.127897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Effective removal of nitrogen from coking wastewaters is a great challenge, since conventional biological technologies commonly suffer from concentrated bio-toxic components such as phenolic compounds and thiocyanide (SCN-). This study has successfully developed a novel ternary process for efficiently removing nitrogen from a practical coking wastewater, by rationally combined biological pretreatment, Fenton sub-pretreatment and final partial nitrification-denitrification (PN) process. It was noted that the oxic biological pretreatment (OP) could degrade above 80 % of COD and SCN- in the wastewater, by adopting the pristine coking wastewater sludge. Fenton sub-pretreatment would further degrade the residual toxic organics and protect the metabolic activity of nitrobacteria and denitrobacteria, realizing the efficient removal of NH4+-N and TN that occurred in the final PN process with self-cultivated sludge. This work can provide an interesting strategy by rationally combining biological-physicochemical processes for nitrogen removal in toxic industrial wastewaters.
Collapse
Affiliation(s)
- Chen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yaming Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Mingjie Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wei Xiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhicheng Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
| | - Tao Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
10
|
Lee YJ, Lin BL, Lei Z. Nitrous oxide emission mitigation from biological wastewater treatment - A review. BIORESOURCE TECHNOLOGY 2022; 362:127747. [PMID: 35964917 DOI: 10.1016/j.biortech.2022.127747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) emitted from wastewater treatment processes has emerged as a focal point for academic and practical research amidst pressing environmental issues. This review presents an updated view on the biological pathways for N2O production and consumption in addition to the critical process factors affecting N2O emission. The current research trends including the strain and reactor aspects were then outlined with discussions. Last but not least, the research needs were proposed. The holistic life cycle assessment needs to be performed to evaluate the technical and economic feasibility of the proposed mitigation strategies or recovery options. This review also provides the background information for the proposed future research prospects on N2O mitigation and recovery technologies. As pointed out, dilution effects of the produced N2O gas product would hinder its use as renewable energy; instead, its use as an effective oxidizing agent is proposed as a promising recovery option.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10649, Taiwan
| | - Bin-le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
11
|
Qin C, Yao D, Cheng C, Xie H, Hu Z, Zhang J. Influence of iron species on the simultaneous nitrate and sulfate removal in constructed wetlands under low/high COD concentrations. ENVIRONMENTAL RESEARCH 2022; 212:113453. [PMID: 35537498 DOI: 10.1016/j.envres.2022.113453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Nitrate and sulfate are crucial factors of eutrophication and black and odorous water in the surface water and thus have raised increasing environmental concerns. Constructed wetlands (CWs) are the last ecological barrier before effluent enters the natural water body. To explore the simultaneous removal of nitrate and sulfate, the CW microcosms of CW-Con (with quartz sand), CW-ZVI (quartz sand and zero-valent iron), CW-Mag (quartz sand and magnetite), CW-ZVI + Mag (quartz sand, ZVI and magnetite) groups were set up under the low (100 mg/L)/high (300 mg/L) chemical oxygen demand (COD) concentration. Under the high COD condition, CW-ZVI group showed the best performance in nitrate (97.1%) and sulfate (96.9%) removal. Under the low COD concentration, the removal content of nitrate and sulfate in CW-ZVI group was better than CW-Mag group. The reason for this result was that zero-valent iron (ZVI) could be the electron donor for nitrate and sulfate reduction. Meanwhile, ZVI promoted chemical denitrification under high COD concentration according to PCA analysis. In addition, the produced sulfides inhibited the relative abundance of denitrifying bacteria, resulting in the lowest nitrate removal rate in CW-Mag group with sufficient electron donors. This study provided an alternative method to enhance simultaneous sulfate and nitrate removal in CWs.
Collapse
Affiliation(s)
- Congli Qin
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Dongdong Yao
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Cheng Cheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| |
Collapse
|
12
|
Xia D, Zhao H, Kobayashi S, Mi Q, Hao A, Iseri Y. Effect of remediation reagents on bacterial composition and ecological function in black-odorous water sediments. Arch Microbiol 2022; 204:280. [PMID: 35462604 PMCID: PMC9035426 DOI: 10.1007/s00203-022-02871-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022]
Abstract
Black-odorous urban water bodies and sediments pose a serious environmental problem. In this study, we conducted microcosm batch experiments to investigate the effect of remediation reagents (magnesium hydroxide and calcium nitrate) on native bacterial communities and their ecological functions in the black-odorous sediment of urban water. The dominant phyla (Proteobacteria, Actinobacteria, Chloroflexi, and Planctomycetes) and classes (Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria, Actinobacteria, Anaerolineae, and Planctomycetia) were determined under calcium nitrate and magnesium hydroxide treatments. Functional groups related to aerobic metabolism, including aerobic chemoheterotrophy, dark sulfide oxidation, and correlated dominant genera (Thiobacillus, Lysobacter, Gp16, and Gaiella) became more abundant under calcium nitrate treatment, whereas functional genes potentially involved in dissimilatory sulfate reduction became less abundant. The relative abundance of chloroplasts, fermentation, and correlated genera (Desulfomonile and unclassified Cyanobacteria) decreased under magnesium hydroxide treatment. Overall, these results indicated that calcium nitrate addition improved hypoxia-related reducing conditions in the sediment and promoted aerobic chemoheterotrophy.
Collapse
Affiliation(s)
- Dong Xia
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Hanbin Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Sohei Kobayashi
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Qi Mi
- Nanjing Guoxing Environmental Protection Industry Research Institute Co. LTD, Nanjing, 211899, China
| | - Aimin Hao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Yasushi Iseri
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| |
Collapse
|