1
|
Hauns J, Zeug L, Moosmann L, Zwickel T, Schächtele A. Polychlorinated Alkanes in feed from the German market. CHEMOSPHERE 2025; 381:144434. [PMID: 40367745 DOI: 10.1016/j.chemosphere.2025.144434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Polychlorinated Alkanes (PCAs) were analysed in 47 feed samples, 13 and 34 respectively of animal and plant origin, collected from the southern German market in 2023. The overall median concentration of ∑PCAs- was determined as 10ngg-1 ww, with plant-based feeds being considerably lower than feed of animal origin, with respective median values of 8.8 and 44ngg-1 ww. Highest levels of PCAs with respect to fresh weight were found in plant-based fats and oils, including the highest sample at more than 9000ngg-1 ww, followed by feed of animal origin, particularly fish meal. Seeds, press cakes, meals and soy based products were usually lower. The ratio of ∑PCAs- to ∑PCAs- was below 1 for almost all samples, potentially resulting from the European enforcement of the Stockholm Convention. Homologue response pattern revealed a small difference in the abundances of chain lengths - between feed of animal origin and plant-based feeds.
Collapse
Affiliation(s)
- Jakob Hauns
- European Reference Laboratory for halogenated POPs in Feed and Food (EURL POPs), Bissierstr.5, 79114, Freiburg, Germany.
| | - Lena Zeug
- European Reference Laboratory for halogenated POPs in Feed and Food (EURL POPs), Bissierstr.5, 79114, Freiburg, Germany.
| | - Lena Moosmann
- European Reference Laboratory for halogenated POPs in Feed and Food (EURL POPs), Bissierstr.5, 79114, Freiburg, Germany.
| | - Theresa Zwickel
- European Reference Laboratory for halogenated POPs in Feed and Food (EURL POPs), Bissierstr.5, 79114, Freiburg, Germany.
| | - Alexander Schächtele
- European Reference Laboratory for halogenated POPs in Feed and Food (EURL POPs), Bissierstr.5, 79114, Freiburg, Germany.
| |
Collapse
|
2
|
Fang K, Sun YB, He RM, Qian JK, Gu W, Lu YF, Dong ZM, Wan Y, Wang C, Tang S. A critical review of human internal exposure to short-chain chlorinated paraffins and its concerning health risks. ENVIRONMENTAL RESEARCH 2025; 272:121179. [PMID: 39983965 DOI: 10.1016/j.envres.2025.121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Short-chain chlorinated paraffins (SCCPs) are a complex mixture of chlorinated derivatives of n-alkanes with a chain length of 10-13 carbon atoms. SCCPs have been extensively used in industrial applications, although an alarming concern is increasingly raised in hazarding environmental matrices and biological organisms due to the environmental persistence, bioaccumulation potential, biotoxicity, and long-range atmospheric transport. Herein, this study conducted a critical review of human internal exposure to SCCPs and its concerning health risks by thoroughly analyzing 63 relevant articles screened in online databases, including the Web of Science, PubMed, Elsevier ScienceDirect, and China National Knowledge Infrastructure (CNKI). The review focused on various biological matrices, including blood, breast milk, and placenta, to assess human internal exposure to SCCPs, and summarized systematic health risk assessments for external exposures across different population groups. The primary exposure routes of SCCPs were dietary intake and dust ingestion and dermal absorption. Particularly, vulnerable population groups of infants, children, and occupational workers suffered from an elevated health risk of SCCPs, with the daily SCCPs intake approaching or exceeding the tolerable daily intake (TDI). So far, existing literature on an internal exposure to SCCPs by detecting human biological samples is insufficient and lacks a comprehensive, life cycle-wide monitoring of vulnerable and occupational populations. The relationship between human exposure to SCCPs and the consequent adverse health effects requires a further deep mining. Moreover, there is a lack of established exposure warning guidance values, and available internal exposure assessment models of SCCPs are currently limited. The future research priority is to knit together the assessment of human internal exposure to SCCPs and the following health risk by advanced sample pre-treatment and analytical methodologies, standardized operating procedures, and non-targeted screening combined with targeted detection techniques. Through a continuous monitoring of human internal exposure to SCCPs, clear illustration of the exposure-effect relationship and comprehensive health risk assessments via multiple exposure routes, these results shed lights on developing and revising regulatory frameworks for governing the production and handling of SCCPs.
Collapse
Affiliation(s)
- Ke Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yi-Bin Sun
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Run-Ming He
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jian-Kun Qian
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; School of Public Health, China Medical University, Shenyang, 110122, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yi-Fu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhao-Min Dong
- School of Public Health, Southeast University, Nanjing, 211189, China
| | - Yi Wan
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Balla D, Costopoulou D, Perkons I, Saraga D, Zacs D, Voutsa D, Leondiadis L, Maggos T. Short- and medium-chain polychlorinated alkanes in the air of Athens, Greece. CHEMOSPHERE 2025; 373:144162. [PMID: 39923610 DOI: 10.1016/j.chemosphere.2025.144162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
The atmospheric occurrence and partition between the gas and particulate phase of short- (PCAs-C10-13) and medium-chain (PCAs-C14-17) polychlorinated alkanes (PCAs) were investigated during two sampling campaigns in Athens city, Greece. The concentrations of PCAs ranged between 1.46 and 43.6 ng m-3 in the gas phase, and between 5.8 and 40.3 ng m-3 in the particulate phase, which were within the reported levels in Europe. Significant seasonal variation was observed for PCAs-C10-13 and PCAs-C14-17 in the gas phase. C10Cl6-7 and C14Cl6-8 were the predominant short- and medium-chain congeners, respectively. Gas-phase PCAs exhibited significant positive correlation with temperature, and negative correlation with relative humidity. Diagnostic ratios of medium to short-chain PCAs suggested that ΣPCAs in total suspended particle (TSP) mainly originated from local sources. Furthermore, the relationship between partitioning coefficient Kp and the subcooled liquid pressure (PL°) was investigated. Moreover, Positive Matrix Factorization (PMF) analysis was employed to identify the potential ΣPCAs groups of sources. Finally, the estimated risk of inhalation exposure to ΣPCAs for adults and children was found to be low.
Collapse
Affiliation(s)
- Dimitra Balla
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece; Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Danae Costopoulou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece.
| | - Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Iela 3, Riga, LV-1076, Latvia.
| | - Dikaia Saraga
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece.
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Iela 3, Riga, LV-1076, Latvia.
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Leondios Leondiadis
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece.
| | - Thomas Maggos
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR "Demokritos", Agia Paraskevi, Athens, 15341, Greece.
| |
Collapse
|
4
|
Ohoro CR, Olisah C, Wepener V. Investigating the research landscape of chlorinated paraffins over the past ten decades. FRONTIERS IN TOXICOLOGY 2025; 6:1533722. [PMID: 39911852 PMCID: PMC11794532 DOI: 10.3389/ftox.2024.1533722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Chlorinated paraffins (CPs) are classified as emerging persistent organic pollutants (POPs). Due to their associated environmental and health impacts, these groups of chemicals have been a subject of interest among researchers in the past decades. Here we used a scientometric approach to understand the research landscape of CPs using literature published in the Web of Science and Scopus database. RStudio and VOSviewer programs were employed as scientometric tools to analyze the publication trends in global CP-related research from 1916 to 2024. A total of 1,452 articles were published over this period, with a publication/author and co-author/publication ratio of 0.43 and 5.49, respectively. China ranked first in publication output (n = 556, 43.3%), and the highest total citations (n = 12,007), followed by Sweden (n = 90), Canada (n = 77), and Germany (n = 75). Publications from developing countries were limited, with most contributions from Africa originating from Egypt (n = 7), South Africa (n = 5), and Nigeria (n = 3), primarily through international collaborations. The average annual growth rate of 4.3% suggests a significant future article output. This scientometric analysis allowed us to infer global trends in CPs, identify tendencies and gaps, and contribute to future research. Despite having similar toxicity to short-chain chlorinated paraffin (SCCP), long-chain chlorinated paraffin (LCCP) has received less attention. Therefore, future research should prioritize studying LCCP bioaccumulation and toxicity in diverse food webs, focusing on aquatic species vulnerable to CPs and effective toxicological models. Additionally, collaborative research with developing countries should be encouraged to enhance meeting the Stockholm Convention's demand.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Gqeberha, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
McGrath TJ, Hägele C, Schweizer S, Vetter W, Dodson RE, Le Bizec B, Covaci A, Dervilly G, Cariou R. Application of pattern deconvolution strategies for the estimation of bromochloro alkane concentrations in indoor dust samples. CHEMOSPHERE 2024; 366:143370. [PMID: 39306103 DOI: 10.1016/j.chemosphere.2024.143370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Bromochloro alkanes (BCAs) are a class of flame retardants similar in structure to polychlorinated alkanes (PCAs), which are the major component of short-chain chlorinated paraffins (SCCPs) listed as Persistent Organic Pollutants under the Stockholm Convention. BCAs have recently been detected for the first time in environmental samples. Due to the complete lack of commercially available analytical standards, no method for quantifying BCAs has been reported to date. In this study, 16 custom-synthesised standards with mixed bromine and chlorine halogenation and carbon chain lengths ranging from C10 to C17 were characterized by liquid chromatography and Orbitrap high-resolution mass spectrometry and used to assess the applicability of pattern deconvolution quantification strategies for BCAs in indoor dust. Br1-9 and Cl1-8 BCAs were detected as [M + Cl]- adduct ions among the C10 to C17 standards, as well as numerous PCA homologues. After applying correction factors to account for the presence of PCAs in the standards, triplicate fortification experiments using varied halogenation composition and concentration determined an average measurement accuracy of 81% over the carbon chain lengths studied and coefficient of variance ≤20% between replicates. Overall, approximately 89% of the ΣBCA concentrations quantified in the fortification trials met the European Union Reference Laboratory's accuracy acceptability criteria recommended for PCAs, between 50 and 150%. Application of the BCA pattern deconvolution quantification procedure to seven representative indoor dust samples from the United States of America revealed a low correlation between the homologue distribution in the samples and the prototype standards (R2 ≤ 0.40), which precluded reliable quantification. This study indicates that pattern deconvolution is an appropriate strategy for quantifying BCAs in environmental samples, but that a large set of appropriate mixture standards will be required before more reliable estimates of BCA concentrations can be achieved in indoor dust.
Collapse
Affiliation(s)
- Thomas J McGrath
- Oniris, INRAE, LABERCA, 44300, Nantes, France; Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Clara Hägele
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | - Sina Schweizer
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | | | | |
Collapse
|
6
|
Amoura C, Larvor F, Marchand P, Bizec BL, Cariou R, Bichon E. Quantification of chlorinated paraffins by chromatography coupled to high-resolution mass spectrometry - Part B: Influence of liquid chromatography separation. CHEMOSPHERE 2024; 352:141401. [PMID: 38346520 DOI: 10.1016/j.chemosphere.2024.141401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
The analysis of chlorinated paraffins (CPs) is today an analytical challenge. Indeed, it is still impractical to describe their real composition in terms of polychlorinated alkanes (PCAs) homologue groups, which dominate technical mixtures. The co-elution of PCA congeners generates interferences due to the competition phenomena which occur during the ionisation process as well as to the dependence of the ionisation sources on the PCA chemistry. Therefore, the aim of this study was to investigate the influence of chromatographic separation, by LC-ESI-HRMS coupling, on the PCA homologue group pattern and, eventually, on their determination in food samples from interlaboratory studies. For this, three different mobile phases and six LC chromatographic columns were studied in order to optimise the analysis of CP mixtures. The first results showed that the use of a MeOH/H2O mobile phase reveals more appropriately the higher chlorinated PCAs. However, using ACN/H2O led to less ion species, with almost exclusively [M + Cl]- adducts, formed using post-column dichloromethane addition. Regarding the choice of the stationary phases, Hypercarb column provided a completely different homologue group pattern from the other chromatographic columns, in relation with the stronger retention of PCAs. Among the other columns, the C30 column better highlighted the short-chain PCAs compared to the C18 column conventionally used. Because the regulations now concern short-chain CPs, the quantification of food samples was then carried out on the C30 column. The optimised LC-ESI-HRMS conditions using C30 column and MeOH/H2O solvent mixture led to a quantification of PCAs in samples from interlaboratory studies with satisfactory accuracy (|Z-score| ≤ 2) and precision (<15%).
Collapse
|
7
|
Chen L, Mai B, Luo X. Bioaccumulation and Biotransformation of Chlorinated Paraffins. TOXICS 2022; 10:778. [PMID: 36548610 PMCID: PMC9783579 DOI: 10.3390/toxics10120778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Chlorinated paraffins (CPs), a class of persistent, toxic, and bioaccumulated compounds, have received increasing attention for their environmental occurrence and ecological and human health risks worldwide in the past decades. Understanding the environmental behavior and fate of CPs faces a huge challenge owing to the extremely complex CP congeners. Consequently, the aims of the present study are to summarize and integrate the bioaccumulation and biotransformation of CPs, including the occurrence of CPs in biota, tissue distribution, biomagnification, and trophic transfer, and biotransformation of CPs in plants, invertebrates, and vertebrates in detail. Biota samples collected in China showed higher CP concentrations than other regions, which is consistent with their huge production and usage. The lipid content is the major factor that determines the physical burden of CPs in tissues or organs. Regarding the bioaccumulation of CPs and their influence factors, inconsistent results were obtained. Biotransformation is an important reason for this variable. Some CP congeners are readily biodegradable in plants, animals, and microorganisms. Hydroxylation, dechlorination, chlorine rearrangement, and carbon chain decomposition are potential biotransformation pathways for the CP congeners. Knowledge of the influence of chain length, chlorination degree, constitution, and stereochemistry on the tissue distribution, bioaccumulation, and biotransformation is still scarce.
Collapse
Affiliation(s)
- Liujun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
8
|
McGrath TJ, Fujii Y, Jeong Y, Bombeke J, Covaci A, Poma G. Levels of Short- and Medium-Chain Chlorinated Paraffins in Edible Insects and Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13212-13221. [PMID: 35969810 DOI: 10.1021/acs.est.2c03255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study reports on the occurrence and distribution of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs, respectively) in edible insects purchased from Asia and Europe. A total of 36 edible insect samples (n = 24 from Asia, n = 12 from Europe) authorized and prepared for human consumption were purchased and analyzed for SCCPs and MCCPs via gas chromatography and mass spectrometry. SCCPs were detected in 83% of all edible insect samples with an overall median ∑SCCP concentration of 8.7 ng/g dry weight (dw) and a range of <2.0 to 410 ng/g dw, while MCCPs were present in 92% of samples with a median ∑MCCP concentration of 51 ng/g dw and a range of <6.0 to 380 ng/g dw. Median ∑SCCP and ∑MCCP levels in edible insects purchased in Asia were approximately two- and four-times higher, respectively, than those from Europe, while the difference was statistically significant for ∑MCCPs (p < 0.001). Differences in homologue patterns were also observed between Asian and European samples to suggest diverse sources of CP contamination to insects which may include environmental accumulation, industrial processing equipment and food additives. Estimated daily intake of SCCPs and MCCPs via consumption of edible insects suggested that adverse health outcomes were very unlikely, but that continued monitoring of insect farming and processing practices are warranted.
Collapse
Affiliation(s)
- Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Yunsun Jeong
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
9
|
Chlorinated paraffins in nut-nougat and chocolate spreads from the German market. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Tomasko J, Maxa D, Navratilova K, Kourimsky T, Hrbek V, Hajšlova J, Pulkrabova J. Application of Liquid- and Supercritical Fluid Chromatography Coupled with High-Resolution Mass Spectrometry for the Analysis of Short-, Medium-, and Long-Chain Chlorinated Paraffins in Dietary Supplements. LCGC EUROPE 2022. [DOI: 10.56530/lcgc.eu.qd8477p7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chlorinated paraffins (CPs) are an emerging and ubiquitous group of environmental pollutants associated with adverse effects on human health, including endocrine disruption and possible carcinogenicity. In this study, supercritical fluid chromatography (SFC) and ultrahigh-performance liquid chromatography (UHPLC) — both coupled with high-resolution mass spectrometry (HRMS) — methods for the analysis of short-, medium-, and long-chain CPs in fish oil-based dietary supplements were developed and validated at concentration levels of 0.6 and 3.0 µg/g lipid weight (lw). The recoveries were in the range of 80–96% and repeatabilities, expressed as relative standard deviations, were <19%. The limits of detection for the UHPLC–HRMS method (from 0.03 to 0.05 µg/g lw) were 5 to 10 times lower than those obtained by SFC–HRMS (from 0.13 to 0.50 µg/lw).
Collapse
|