1
|
Li S, Ying Z, Peng R, Zhou Y, Zhang S, Zhao J, Song S, Chen J, Ye J. Enhanced 1,2-dichloroethane removal using g-C 3N 4/Blue TiO 2 nanotube array photoanode in microbial photoelectrochemical cells. CHEMOSPHERE 2024; 363:142839. [PMID: 39019181 DOI: 10.1016/j.chemosphere.2024.142839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
The compound 1,2-dichloroethane (1,2-DCA), a persistent and ubiquitous pollutant, is often found in groundwater and can strongly affect the ecological environment. However, the extreme bio-impedance of C-Cl bonds means that a high energy input is needed to drive biological dechlorination. Biotechnology techniques based on microbial photoelectrochemical cell (MPEC) could potentially convert solar energy into electricity and significantly reduce the external energy inputs currently needed to treat 1,2-DCA. However, low electricity-generating efficiency at the anode and sluggish bioreaction kinetics at the cathode limit the application of MPEC. In this study, a g-C3N4/Blue TiO2-NTA photoanode was fabricated and incorporated into an MPEC for 1,2-DCA removal. Optimal performance was achieved when Blue TiO2 nanotube arrays (Blue TiO2-NTA) were loaded with graphitic carbon nitride (g-C3N4) 10 times. The photocurrent density of the g-C3N4/Blue TiO2-NTA composite electrode was 2.48-fold higher than that of the pure Blue TiO2-NTA electrode under light irradiation. Furthermore, the MPEC equipped with g-C3N4/Blue TiO2-NTA improved 1,2-DCA removal efficiency by 45.21% compared to the Blue TiO2-NTA alone, which is comparable to that of a microbial electrolysis cell. In the modified MPEC, the current efficiency reached 69.07% when the light intensity was 150 mW cm-2 and the 1,2-DCA concentration was 4.4 mM. The excellent performance of the novel MPEC was attributed to the efficient direct electron transfer process and the abundant dechlorinators and electroactive bacteria. These results provide a sustainable and cost-effective strategy to improve 1,2-DCA treatment using a biocathode driven by a photoanode.
Collapse
Affiliation(s)
- Shaoyu Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zanyun Ying
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science & Technology, Ningbo University, Ningbo, 315212, China
| | - Ruijian Peng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yu Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China; School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China.
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
2
|
Lyu H, Hu K, Wu Z, Shen B, Tang J. Functional materials contributing to the removal of chlorinated hydrocarbons from soil and groundwater: Classification and intrinsic chemical-biological removal mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163011. [PMID: 36965728 DOI: 10.1016/j.scitotenv.2023.163011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Chlorinated hydrocarbons (CHs) are the main contaminants in soil and groundwater and have posed great challenge on the remediation of soil and ground water. Different remediation materials have been developed to deal with the environmental problems caused by CHs. Remediation materials can be classified into three main categories according to the corresponding technologies: adsorption materials, chemical reduction materials and bioaugmentation materials. In this paper, the classification and preparation of the three materials are briefly described in terms of synthesis and properties according to the different types. Then, a detailed review of the remediation mechanisms and applications of the different materials in soil and groundwater remediation is presented in relation to the various properties of the materials and the different challenges encountered in laboratory research or in the environmental application. The removal trends in different environments were found to be largely similar, which means that composite materials tend to be more effective in removing CHs in actual remediation. For instance, adsorbents were found to be effective when combined with other materials, due to the ability to take advantage of the respective strengths of both materials. The rapid removal of CHs while minimizing the impact of CHs on another material and the material itself on the environment. Finally, suggestions for the next research directions are given in conjunction with this paper.
Collapse
Affiliation(s)
- Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kai Hu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Ramli NN, Othman AR, Kurniawan SB, Abdullah SRS, Hasan HA. Metabolic pathway of Cr(VI) reduction by bacteria: A review. Microbiol Res 2023; 268:127288. [PMID: 36571921 DOI: 10.1016/j.micres.2022.127288] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/26/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Heavy metal wastes, particularly hexavalent chromium [Cr(VI)], are generated from anthropogenic activities, and their increasing abundance has been a research concern due to their toxicity, genotoxicity, carcinogenicity and mutagenicity. Exposure to these dangerous pollutants could lead to chronic infections and even mortality in humans and animals. Bioremediation using microorganisms, particularly bacteria, has gained considerable interest because it can remove contaminants naturally and is safe to the surrounding environment. Bacteria, such as Pseudomonas putida and Bacillus subtilis, can reduce the toxic Cr(VI) to the less toxic trivalent chromium Cr(III) through mechanisms including biotransformation, biosorption and bioaccumulation. These mechanisms are mostly linked to chromium reductase and nitroreductase enzymes, which are involved in the Cr(VI) reduction pathway. However, relevant data on the nitroreductase route remain insufficient. Thus, this work proposes an alternative metabolic pathway of nitroreductase, wherein nitrate activates the reaction and indirectly reduces toxic chromium. This nitroreductase pathway occurs concurrently with the chromium reduction pathway.
Collapse
Affiliation(s)
- Nur Nadhirah Ramli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Song Q, Xue Z, Wu H, Zhai Y, Lu T, Du X, Zheng J, Chen H, Zuo R. The collaborative monitored natural attenuation (CMNA) of soil and groundwater pollution in large petrochemical enterprises: A case study. ENVIRONMENTAL RESEARCH 2023; 216:114816. [PMID: 36400217 DOI: 10.1016/j.envres.2022.114816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
A large in-service petrochemical enterprises in Northeast China was taken as the research object, and the Collaborative Monitored Natural Attenuation (CMNA) for soil and groundwater pollution was carried out to remedy combined pollution and reduce environmental risks. The pollutants distributions were obtained based on detailed regional investigation (Mar. 2019), and feature pollutants in soil and groundwater were then screened. The spatiotemporal variations of feature pollutants and relative microbial responses were explored during the CMNA process. Furthermore, the CMNA efficiency of the contaminated site at initial stage was evaluated by calculation of natural attenuation rate constant. The results showed that the feature pollutants in soil were 2,2',5,5'-tetrachlorobiphenyl (2,2',5,5'-TCB) and petroleum hydrocarbons (C10∼C40), and the feature pollutant in groundwater was 1,2-dichloroethane (1,2-DCA). The concentrations of all feature pollutants decreased continuously during four years of monitoring. Feature pollutants played a dominant role in the variability of microbial species both in soil and groundwater, increasing the relative abundance of petroleum tolerant/biodegradation bacteria, such as Actinobacteria, Proteobacteria and Acidobacteriota. The average natural attenuation rate constant of 2,2',5,5'-TCB and C10∼C40 in soil was 0.0012 d-1 and 0.0010 d-1, respectively, meeting the screening value after four years' attenuation. The average natural attenuation rate constant of 1,2-DCA was 0.0004 d-1, which need strengthening measures to improve the attenuation efficiency.
Collapse
Affiliation(s)
- Quanwei Song
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China
| | - Zhenkun Xue
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China; College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Huijun Wu
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China
| | - Yong Zhai
- China Kunlun Contracting & Engineering Co., Ltd., Jilin Branch, Jilin, 132013, China
| | - Taotao Lu
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China
| | - Xianyuan Du
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China
| | - Jin Zheng
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China
| | - Hongkun Chen
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing, 102206, China.
| | - Rui Zuo
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
5
|
Jeong WG, Kim JG, Lee SM, Baek K. CaO 2-based electro-Fenton-oxidation of 1,2-dichloroethane in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157065. [PMID: 35780882 DOI: 10.1016/j.scitotenv.2022.157065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
It has been well recognized that the Fenton reaction requires a rigorous pH control and suffers from the fast self-degradation of H2O2. In an effort to resolve the technical demerits of the conventional Fenton reaction, particular concern on the use of CaO2-based Fenton reaction was paid in this study. To realize the practical use of CaO2 in the Fenton reaction for groundwater remediation, it could be of great importance to control its reaction rate in the subsurface. As such, this study laid great emphasis on the combined process of electrochemical oxidation and CaO2-based Fenton oxidation, using 1,2-dichloroethane (1,2-DCA) as a model compound. It was hypothesized that the reaction rate is also highly contingent on the formation of Fe(II) (stemmed from iron anode oxidation). Eighty percent of 1,2-DCA were degraded by the CaO2-based Fenton reaction. The final pH was neutral, inferring that the reaction could be a viable option for the subsurface environment. Moreover, the supply of electric current in an iron anode expedited 1,2-DCA degradation efficiency from 35 % to 62 % via electrically generated Fe(II), which donated electrons to H2O2, producing more hydroxyl radicals. An anode-cathode configuration from the single-well system enhanced the degradation of 1,2-DCA, with less amount of energy consumption than the double-well system. Based on results, CaO2-based electro-Fenton oxidation can remove well 1,2-DCA in groundwater and can be a strategic measure for groundwater remediation.
Collapse
Affiliation(s)
- Won-Gune Jeong
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Su-Min Lee
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Civil, Environmental, and Resources-Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
6
|
Prediction of Dichloroethene Concentration in the Groundwater of a Contaminated Site Using XGBoost and LSTM. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159374. [PMID: 35954730 PMCID: PMC9367752 DOI: 10.3390/ijerph19159374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023]
Abstract
Chlorinated aliphatic hydrocarbons (CAHs) are widely used in agriculture and industries and have become one of the most common groundwater contaminations. With the excellent performance of the deep learning method in predicting, LSTM and XGBoost were used to forecast dichloroethene (DCE) concentrations in a pesticide-contaminated site undergoing natural attenuation. The input variables included BTEX, vinyl chloride (VC), and five water quality indicators. In this study, the predictive performances of long short-term memory (LSTM) and extreme gradient boosting (XGBoost) were compared, and the influences of variables on models’ performances were evaluated. The results indicated XGBoost was more likely to capture DCE variation and was robust in high values, while the LSTM model presented better accuracy for all wells. The well with higher DCE concentrations would lower the model’s accuracy, and its influence was more evident in XGBoost than LSTM. The explanation of the SHapley Additive exPlanations (SHAP) value of each variable indicated high consistency with the rules of biodegradation in the real environment. LSTM and XGBoost could predict DCE concentrations through only using water quality variables, and LSTM performed better than XGBoost.
Collapse
|
7
|
Almaamary EAS, Abdullah SRS, Ismail N'I, Idris M, Kurniawan SB, Imron MF. Comparative performance of Scirpus grossus for phytotreating mixed dye wastewater in batch and continuous pilot subsurface constructed wetland systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114534. [PMID: 35065382 DOI: 10.1016/j.jenvman.2022.114534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Dye is one of the pollutants found in water bodies because of the increased growth of the textile industry. In this study, Scirpus grossus was planted inside a constructed wetland to treat mixed dye (methylene blue and methyl orange)-containing wastewater under batch and continuous modes. The plants were exposed to various concentrations (0, 50, 75, and 100 mg/L) of mixed dye for 72 days (with hydraulic retention time of 7 days for the continuous system). Biological oxygen demand, chemical oxygen demand, total organic carbon, pH, temperature, ionic content, and plant growth parameters were measured. Results showed that S. grossus can withstand all the tested dye concentrations until the end of the treatment period. Color removal efficiencies of 86, 84, and 75% were obtained in batch mode, whereas 90%, 85%, and 79% were obtained in continuous mode for 50, 75, and 100 mg/L dye concentrations, respectively. Fourier-transform infrared analysis confirmed the transformation of dye compounds after treatment and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis showed that most of the intermediate compounds were not absorbed into plants but adsorbed onto the surface of the root structure.
Collapse
Affiliation(s)
- Enas Abdulqader Saeed Almaamary
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia.
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Mushrifah Idris
- Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya, 60115, Indonesia.
| |
Collapse
|
8
|
Kurniawan SB, Ramli NN, Said NSM, Alias J, Imron MF, Abdullah SRS, Othman AR, Purwanti IF, Hasan HA. Practical limitations of bioaugmentation in treating heavy metal contaminated soil and role of plant growth promoting bacteria in phytoremediation as a promising alternative approach. Heliyon 2022; 8:e08995. [PMID: 35399376 PMCID: PMC8983376 DOI: 10.1016/j.heliyon.2022.e08995] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/30/2022] Open
Abstract
Bioaugmentation, the addition of cultured microorganisms to enhance the currently existing microbial community, is an option to remediate contaminated areas. Several studies reported the success of the bioaugmentation method in treating heavy metal contaminated soil, but concerns related to the applicability of this method in real-scale application were raised. A comprehensive analysis of the mechanisms of heavy metal treatment by microbes (especially bacteria) and the concerns related to the possible application in the real scale were juxtaposed to show the weakness of the claim. This review proposes the use of bioaugmentation-assisted phytoremediation in treating heavy metal contaminated soil. The performance of bioaugmentation-assisted phytoremediation in treating heavy metal contaminated soil as well as the mechanisms of removal and interactions between plants and microbes are also discussed in detail. Bioaugmentation-assisted phytoremediation shows greater efficiencies and performs complete metal removal from soil compared with only bioaugmentation. Research related to selection of hyperaccumulator species, potential microbial species, analysis of interaction mechanisms, and potential usage of treating plant biomass after treatment are suggested as future research directions to enhance this currently proposed topic.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Nur Nadhirah Ramli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Jahira Alias
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya, 60115, Indonesia
- Corresponding author.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
- Corresponding author.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Ipung Fitri Purwanti
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| |
Collapse
|